中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (8): 2051-2063.DOI: 10.1016/j.cjche.2020.02.008
Yan Zhang1, Bekir Engin Eser1, Peter Kristensen2, Zheng Guo1
收稿日期:
2020-01-02
修回日期:
2020-01-27
出版日期:
2020-08-28
发布日期:
2020-09-19
通讯作者:
Zheng Guo
基金资助:
Yan Zhang1, Bekir Engin Eser1, Peter Kristensen2, Zheng Guo1
Received:
2020-01-02
Revised:
2020-01-27
Online:
2020-08-28
Published:
2020-09-19
Contact:
Zheng Guo
Supported by:
摘要: The synthesis of hydroxy fatty acids (HFAs) from renewable oil feedstock by addition of water onto C=C bonds has attracted great attention in recent years. Given that selective asymmetric hydration of non-activated C=C bonds has been proven difficult to achieve with chemical catalysts, enzymatic catalysis by fatty acid hydratases (FAHs) presents an attractive alternative approach to produce value-added HFAs with high regio-, enantioand stereospecificity, as well as excellent atom economy. Even though FAHs have just been investigated as a potential biocatalyst for a decade, remarkable information about FAHs in different aspects is available; however, a comprehensive review has not been archived. Herein, we summarize the research progresses on biochemical characterization, structural and mechanistic determination, enzyme engineering, as well as biotechnological application of FAHs. The current challenges and opportunities for an efficient utilization of FAHs in organic synthesis and industrial applications are critically discussed.
Yan Zhang, Bekir Engin Eser, Peter Kristensen, Zheng Guo. Fatty acid hydratase for value-added biotransformation: A review[J]. 中国化学工程学报, 2020, 28(8): 2051-2063.
Yan Zhang, Bekir Engin Eser, Peter Kristensen, Zheng Guo. Fatty acid hydratase for value-added biotransformation: A review[J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2051-2063.
[1] A. Mosblech, I. Feussner, I. Heilmann, Oxylipins:Structurally diverse metabolites from fatty acid oxidation, Plant Physiol. Biochem. 47(2009) 511-517. [2] M. Gabbs, S. Leng, J.G. Devassy, M. Monirujjaman, H.M. Aukema, Advances in our understanding of oxylipins derived from dietary PUFAs, Adv. Nutr. 6(2015) 513-540. [3] D.G. Hayes, Enzyme-catalyzed modification of oilseed materials to produce ecofriendly products, J. Am. Oil Chem. Soc. 81(2004) 1077-1103. [4] J.A. Zerkowski, D.K.Y. Solaiman, Synthesis of polyfunctional fatty amines from sophorolipid-derived17-hydroxy oleic acid, J. Am. Oil Chem. Soc. 83(2006) 621-628. [5] K.R. Kim, D.K. Oh, Production of hydroxy fatty acids by microbial fatty acidhydroxylation enzymes, Biotechnol. Adv. 31(2013) 1473-1485. [6] A. Beopoulos, J. Verbeke, F. Bordes, M. Guicherd, M. Bressy, A. Marty, J.M. Nicaud, Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica, Appl. Microbiol. Biotechnol. 98(2014) 251-262. [7] J. Ogawa, New lipid science in our inner ecosystem, Eur. J. Lipid Sci. Technol. 117(2015) 577-578. [8] J.O. Metzger, U. Bornscheuer, Lipids as renewable resources:Current state of chemical and biotechnological conversion and diversification, Appl. Microbiol. Biotechnol. 71(2006) 13-22. [9] D.S. Ogunniyi, Castor oil:A vital industrial raw material, Bioresour. Technol. 97(2006) 1086-1091. [10] H. Mutlu, M.A.R. Meier, Castor oil as a renewable resource for the chemical industry, Eur. J. Lipid Sci. Technol. 112(2009) 10-30. [11] F. Zhang, C. Huang, T. Xu, Production of sebacic acid using two-phase bipolar membrane electrodialysis, Ind. Eng. Chem. Res. 48(2009) 7482-7488. [12] A. Koeckritz, A. Martin, Synthesis of azelaic acid from vegetable oil-based feedstocks, Eur. J. Lipid Sci. Technol. 113(2011) 83-91. [13] J.W. Song, E.Y. Jeon, D.H. Song, H.Y. Jang, U.T. Bornscheuer, D.K. Oh, J.B. Park, Multistep enzymatic synthesis of long-chain alpha, omega-dicarboxylic and omegahydroxycarboxylic acids from renewable fatty acids and plant oils, Angew. Chem. Int. Ed. Engl. 52(2013) 2534-2537. [14] T. Mi, Y. Dong, U. Santhanam, N. Huang, Niacinamide and 12-hydroxystearic acid prevented benzo(a)pyrene and squalene peroxides induced hyperpigmentation in skin equivalent, Exp. Dermatol. 28(2019) 742-746. [15] C.T. Hou, Biotransformation of unsaturated fatty acids to industrial products, Adv. Appl. Microbiol. 47(2000) 201-220. [16] C.T. Hou, Biotechnology for fats and oils:New oxygenated fatty acids, New Biotechnol. 26(2009) 2-10. [17] N. de Lima da Silva, M.R. Wolf-Maciel, C.B. Batistella, R. Maciel Filho, Optimization of biodiesel production from castor oil, Appl. Biochem. Biotechnol. 129-132(2006) 405-414. [18] S. Huf, S. Kruegener, T. Hirth, S. Rupp, S. Zibek, Biotechnological synthesis of longchain dicarboxylic acids as building blocks for polymers, Eur. J. Lipid Sci. Technol. 113(2011) 548-561. [19] C. Liu, F. Liu, J. Cai, W. Xie, T.E. Long, S.R. Turner, A. Lyons, R.A. Gross, Polymers from fatty acids:Poly(ω-hydroxyl tetradecanoic acid) synthesis and physicomechanical studies, Biomacromolecules 12(2011) 3291-3298. [20] T.K. Tran, P. Kumar, H.R. Kim, C.T. Hou, B.S. Kim, Microbial conversion of vegetable oil to hydroxy fatty acid and its application to bio-based polyurethane synthesis, Polymers 10(2018) 927/921-927/916. [21] G.A. Burdock, I.G. Carabin, J.C. Griffiths, Toxicology and pharmacology of sodium ricinoleate, Food Chem. Toxicol. 44(2006) 1689-1698. [22] A. Endrizzi, Y. Pagot, A. LeClainche, J.-M. Nicaud, J.-M. Elin, Production of lactones and peroxisomal beta-oxidation in yeasts, Crit. Rev. Biotechnol. 16(1996) 301-329. [23] Y. Wache, M. Aguedo, J.M. Nicaud, J.M. Belin, Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica, Appl. Microbiol. Biotechnol. 61(2003) 393-404. [24] Y. Wache, F. Husson, G. Feron, J.M. Belin, Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances, Antonie Van Leeuwenhoek 89(2006) 405-416. [25] C.D. Lendrum, B. Ingham, B. Lin, M. Meron, M.F. Toney, K.M. McGrath, Nonequilibrium 2-hydroxyoctadecanoic acid monolayers:Effect of electrolytes, Langmuir 27(2011) 4430-4438. [26] I. Shureiqi, W. Jiang, X. Zuo, Y. Wu, J.B. Stimmel, L.M. Leesnitzer, J.S. Morris, H.-Z. Fan, S.M. Fischer, S.M. Lippman, The 15-lipoxygenase-1 product 13-Shydroxyoctadecadienoic acid down-regulatesPPAR-δ to induce apoptosis in colorectal cancer cells, Proc. Natl. Acad. Sci. U. S. A. 100(2003) 9968-9973. [27] T. Itoh, L. Fairall, K. Amin, Y. Inaba, A. Szanto, B.L. Balint, L. Nagy, K. Yamamoto, J.W.R. Schwabe, Structural basis for the activation of PPARγ by oxidized fatty acids, Nat. Struct. Mol. Biol. 15(2008) 924-931. [28] J.J. Moreno, New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development, Biochem. Pharmacol. 77(2009) 1-10. [29] S. Paul, C.T. Hou, S.C. Kang, α-Glucosidase inhibitory activities of 10-hydroxy-8(E)-octadecenoic acid:an intermediate of bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid, New Biotechnol. 27(2010) 419-423. [30] H.B. Tian, Y. Lu, S.P. Shah, S. Hong, 14S, 21R-Dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds, J. Biol. Chem. 286(2011) 4443-4453. [31] T. Nagai, Y. Shimizu, T. Shirahata, T. Sunazuka, H. Kiyohara, S. Omura, H. Yamada, Oral adjuvant activity for nasal influenza vaccines caused by combination of two trihydroxy fatty acid stereoisomers from the tuber of Pinellia ternata, Int. Immunopharmacol. 10(2010) 655-661. [32] J.M. Schwab, C.N. Serhan, Lipoxins and new lipid mediators in the resolution of inflammation, Curr. Opin. Pharmacol. 6(2006) 414-420. [33] C.N. Serhan, N. Chiang, T.E. Van Dyke, Resolving inflammation:dual antiinflammatory and pro-resolution lipid mediators, Nat. Rev. Immunol. 8(2008) 349-361. [34] M.J. Stables, D.W. Gilroy, Old and new generation lipid mediators in acute inflammation and resolution, Prog. Lipid Res. 50(2011) 35-51. [35] N. Chiang, G. Fredman, F. Baeckhed, S.F. Oh, T. Vickery, B.A. Schmidt, C.N. Serhan, Infection regulates pro-resolving mediators that lower antibiotic requirements, Nature 484(2012) 524-528. [36] M.M. Yore, I. Syed, P.M. Moraes-Vieira, M.A. Herman, J. Lee, O.D. Peroni, A.S. Dhaneshwar, T. Zhang, E.A. Homan, S. Chen, R.T. Patel, T.E. McGraw, A. Hammarstedt, U. Smith, A. Saghatelian, B.B. Kahn, Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects, Cell 159(2014) 318-332. [37] O. Kuda, M. Brezinova, M. Rombaldova, B. Slavikova, M. Posta, P. Beier, P. Janovska, J. Veleba, J. Kopecky, E. Kudova, T. Pelikanova, Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties, Diabetes 65(2016) 2580-2590. [38] M.J. Kolar, S.S. Kamat, W.H. Parsons, E.A. Homan, T. Maher, O.D. Peroni, I. Syed, K. Fjeld, A. Molven, B.B. Kahn, B.F. Cravatt, A. Saghatelian, Branched fatty acid esters of hydroxy fatty acids are preferred substrates of the MODY8 protein carboxyl ester lipase, Biochemistry 55(2016) 4636-4641. [39] B.B. Kahn,. Saghatelian, I. Syed, Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAS) for Use in the Treatment of Type 1 Diabetes, US Pat., US2019/015276A1(2019). [40] P.M. Moraes-Vieira, A. Saghatelian, B.B. Kahn, GLUT4 expression in adipocytes regulates De Novo lipogenesis and levels of a novel class of lipids with antidiabetic and anti-inflammatory effects, Diabetes 65(2016) 1808-1815. [41] J. Lee, P.M. Moraes-Vieira, A. Castoldi, P. Aryal, E.U. Yee, C. Vickers, O. Parnas, C.J. Donaldson, A. Saghatelian, B.B. Kahn, Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses, J. Biol. Chem. 291(2016) 22207-22217. [42] W.H. Parsons, M.J. Kolar, S.S. Kamat, A.B. Cognetta III, J.J. Hulce, E. Saez, B.B. Kahn, A. Saghatelian, B.F. Cravatt, AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs, Nat. Chem. Biol. 12(2016) 367-372. [43] M.J. Kolar, S. Konduri, H. Wang, C. McNerlin, D. Siegel, T. Chang, A. Saghatelian, L. Ohlsson, M. Harrod, Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals, J. Biol. Chem. 294(2019) 10698-10707. [44] J.P. Rodriguez, C. Guijas, A.M. Astudillo, J.M. Rubio, M.A. Balboa, J. Balsinde, Sequestration of 9-hydroxystearic acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a protective mechanism for colon carcinoma cells to avoid apoptotic cell death, Cancers 11(2019) 524. [45] J. Jin, U. Hanefeld, The selective addition of water to C=C bonds; enzymes are the best chemists, Chem. Commun. 47(2011) 2502-2510. [46] V. Resch, U. Hanefeld, The selective addition of water, Catalysis Science & Technology 5(2015) 1385-1399. [47] C.N. Cornell, M.S. Sigman, Recent progress in wacker oxidations:Moving toward molecular oxygen as the sole oxidant, Inorg. Chem. 46(2007) 1903-1909. [48] R.M. Demming, S.C. Hammer, B.M. Nestl, S. Gergel, S. Fademrecht, J. Pleiss, B. Hauer, Asymmetric enzymatic hydration of unactivated, aliphatic alkenes, Angew. Chem., Int. Ed. 58(2019) 173-177. [49] A. Hiseni, I.W.C.E. Arends, L.G. Otten, New cofactor-independent hydration biocatalysts:Structural, biochemical, and biocatalytic characteristics of carotenoid and oleate hydratases, ChemCatChem 7(2015) 29-37. [50] M. Engleder, H. Pichler, On the current role of hydratases in biocatalysis, Appl. Microbiol. Biotechnol. 102(2018) 5841-5858. [51] A.J. Boersma, D. Coquiere, D. Geerdink, F. Rosati, B.L. Feringa, G. Roelfes, Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst, Nat. Chem. 2(2010) 991-995. [52] S.Q. Wang, Z.W. Wang, L.C. Yang, J.L. Dong, C.Q. Chi, D.N. Sui, Y.Z. Wang, J.G. Ren, M.Y. Hung, Y.Y. Jiang, A novel efficient route for preparation of chiral β-hydroxycarboxylic acid:Asymmetric hydration of unsaturated carboxylic acids catalyzed by heterobimetallic complex wool-palladium-cobalt, J. Mol. Catal. A:Chem. 264(2007) 60-65. [53] I. Schnapperelle, W. Hummel, H. Groeger, Formal asymmetric hydration of non-activated alkenes in aqueous medium through a "chemoenzymatic catalytic system", Chem. Eur. J. 18(2012) 1073-1076(S1073/1071-S1073/1023). [54] H. Groeger, Hydroxy functionalization of non-activated C-H and C=C bonds:New perspectives for the synthesis of alcohols through biocatalytic processes, Angew. Chem. Int. Ed. 53(2014) 3067-3069. [55] L.E. Bevers, M.W.H. Pinkse, P.D.E.M. Verhaert, W.R. Hagen, Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond, J. Bacteriol. 191(2009) 5010-5012. [56] S. Kishino, M. Takeuchi, S.B. Park, A. Hirata, N. Kitamura, J. Kunisawa, H. Kiyono, R. Iwamoto, Y. Isobe, M. Arita, H. Arai, K. Ueda, J. Shima, S. Takahashi, K. Yokozeki, S. Shimizu, J. Ogawa, Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 17808-17813. [57] L.L. Wallen, R.G. Benedict, R.W. Jackson, The microbiological production of 10-hydroxystearic acid from oleic acid, Arch. Biochem. Biophys. 99(1962) 249-253. [58] J. Schmid, L. Steiner, S. Fademrecht, J. Pleiss, K.B. Otte, B. Hauer, Biocatalytic study of novel oleate hydratases, J. Mol. Catal. B:Enzym. 133(2016) S243-S249. [59] A. Volkov, A. Liavonchanka, O. Kamneva, T. Fiedler, C. Goebel, B. Kreikemeyer, I. Feussner, Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence, J. Biol. Chem. 285(2010) 10353-10361. [60] E. Rosberg-Cody, A. Liavonchanka, C. Gobel, R.P. Ross, O. O'Sullivan, G.F. Fitzgerald, I. Feussner, C. Stanton, Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection, BMC Biochem. 12(2011) 9. [61] B.N. Kim, Y.C. Joo, Y.S. Kim, K.R. Kim, D.K. Oh, Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis, Appl. Microbiol. Biotechnol. 95(2012) 929-937. [62] M.H. Seo, K.R. Kim, D.K. Oh, Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis, Appl. Microbiol. Biotechnol. 97(2013) 8987-8995. [63] Y.C. Joo, K.W. Jeong, S.J. Yeom, Y.S. Kim, Y. Kim, D.K. Oh, Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus, Biochimie 94(2012) 907-915. [64] Y.C. Joo, E.S. Seo, Y.S. Kim, K.R. Kim, J.B. Park, D.K. Oh, Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia, J. Biotechnol. 158(2012) 17-23. [65] B. Yang, H. Chen, Y. Song, Y.Q. Chen, H. Zhang, W. Chen, Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases, Biotechnol. Lett. 35(2013) 75-81. [66] A. Volkov, S. Khoshnevis, P. Neumann, C. Herrfurth, D. Wohlwend, R. Ficner, I. Feussner, Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus, Acta Crystallogr. Sect. D:Biol. Crystallogr. 69(2013) 648-657. [67] K.J. O'Connell, M.O.C. Motherway, A.A. Hennessey, F. Brodhun, R.P. Ross, I. Feussner, C. Stanton, G.F. Fitzgerald, S.D. van, Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve, Bioengineered 4(2013) 313-321. [68] M. Takeuchi, S. Kishino, A. Hirata, S.-B. Park, N. Kitamura, J. Ogawa, Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarumAKU 1009a, J. Biosci. Bioeng. 119(2015) 636-641. [69] A. Hirata, S. Kishino, M. Takeuchi, N. Kitamura, J. Ogawa, S.-B. Park, A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus, J. Lipid Res. 56(2015) 1340-1350. [70] K.R. Kim, H.J. Oh, C.S. Park, S.H. Hong, J.Y. Park, D.K. Oh, Unveiling of novel regioselective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono-and di-hydroxy fatty acids, Biotechnol. Bioeng. 112(2015) 2206-2213. [71] J. Ortega-Anaya, A. Hernandez-Santoyo, Functional characterization of a fatty acid double-bond hydratase from Lactobacillus plantarum and its interaction with biosynthetic membranes, Biochim. Biophys. Acta. Biomembr. 1848(2015) 3166-3174. [72] Y.Y. Chen, N.Y. Liang, J.M. Curtis, M.G. Ganzle, Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites, Front. Microbiol. 7(2016) 1561. [73] J. Lorenzen, R. Horscht, A. Waldow, F. Qoura, B. Loll, T. Brueck, Rhodococcus erythropolis oleate hydratase:a new member in the oleate hydratase family treebiochemical and structural studies, ChemCatChem 10(2018) 407-414. [74] W.R. Kang, M.J. Seo, K.C. Shin, J.B. Park, D.K. Oh, Comparison of biochemical properties of the original and newly identified oleate hydratases from Stenotrophomonas maltophilia, Appl. Environ. Microbiol. 83(2017) e03351-16. [75] W.R. Kang, M.J. Seo, K.C. Shin, J.B. Park, D.K. Oh, Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids, Biotechnol. Bioeng. 114(2017) 74-82. [76] A.K. Park, G.H. Lee, D.W. Kim, E.H. Jang, H.T. Kwon, Y.M. Chi, Crystal structure of oleate hydratase from Stenotrophomonas sp. KCTC 12332 reveals conformational plasticity surrounding the FAD binding site, Biochem. Biophys. Res. Commun. 499(2018) 772-776. [77] C. Subramanian, M.W. Frank, J.L. Batte, S.G. Whaley, C.O. Rock, Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin, J. Biol. Chem. 294(2019) 9285-9294. [78] Y.X. Wu, J. Pan, H.L. Yu, J.H. Xu, Enzymatic synthesis of 10-oxostearic acid in high space-time yield via cascade reaction of a new oleate hydratase and an alcohol dehydrogenase, Journal of Biotechnology 2(2019) 100008. [79] B.E. Eser, M. Poborsky, R. Dai, S. Kishino, A. Ljubic, M. Takeuchi, C. Jacobsen, J. Ogawa, P. Kristensen, Z. Guo, Rational engineering of hydratase from Lactobacillus acidophilus reveals critical residues directing substrate specificity and regioselectivity, ChemBioChem 21(2020) 550-563. [80] E.Y. Jeon, J.H. Lee, K.M. Yang, Y.C. Joo, D.K. Oh, J.B. Park, Bioprocess engineering to produce 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia, Process Biochem. 47(2012) 941-947. [81] M. Engleder, T. Pavkov-Keller, A. Emmerstorfer, A. Hromic, S. Schrempf, G. Steinkellner, T. Wriessnegger, E. Leitner, G.A. Strohmeier, I. Kaluzna, D. Mink, M. Schuermann, S. Wallner, P. Macheroux, K. Gruber, H. Pichler, Structure-based mechanism of oleate hydratase from Elizabethkingia meningoseptica, ChemBioChem 16(2015) 1730-1734. [82] Y. Zhang, Y.Q. Wu, N. Xu, Q. Zhao, H.L. Yu, J.H. Xu, Engineering of cyclohexanone monooxygenase for the enantioselective synthesis of (S)-omeprazole, ACS Sustain. Chem. Eng. 7(2019) 7218-7226. [83] V. Joosten, W.J. van Berkel, Flavoenzymes, Curr. Opin. Chem. Biol. 11(2007) 195-202. [84] R.M. Demming, K.B. Otte, B.M. Nestl, B. Hauer, Optimized reaction conditions enable the hydration of non-natural substrates by the oleate hydratase from Elizabethkingia meningoseptica, ChemCatChem 9(2017) 758-766. [85] M. Engleder, G.A. Strohmeier, H. Weber, G. Steinkellner, E. Leitner, M. Mueller, D. Mink, M. Schuermann, K. Gruber, H. Pichler, Evolving the promiscuity of Elizabethkingia meningoseptica oleate hydratase for the regio-and stereoselective hydration of oleic acid derivatives, Angew. Chem., Int. Ed. 58(2019) 7480-7484. [86] A. Latrasse, S. Paitier, B. Lachot, P. Bonnarme, G. Feron, A. Durand, J.L. Le Quere, Conversion of oleic acid to 10-hydroxystearic acid by Nocardia paraffinae, Biotechnol. Lett. 19(1997) 715-718. [87] B.N. Kim, S.J. Yeom, D.K. Oh, Conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens, Biotechnol. Lett. 33(2011) 993-997. [88] J.O. Ahn, M.J. Jang, H.W. Lee, H.W. Lee, ImmobilizedLipid Hydratase and Method for Preparing Hydroxy Fatty Acids Using Thereof, Korea Research Institute of Bioscience and Biotechnology, Inwoo Corp., S. Korea, 2015. [89] A. Todea, A. Hiseni, L.G. Otten, I.W.C.E. Arends, F. Peter, C.G. Boeriu, Increase of stability of oleate hydratase by appropriate immobilization technique and conditions, J. Mol. Catal. B Enzym. 119(2015) 40-47. [90] E.J. Seo, C.W. Kang, J.M. Woo, S. Jang, Y.J. Yeon, G.Y. Jung, J.B. Park, Multi-level engineering of Baeyer-Villigermonooxygenase-basedEscherichia coli biocatalysts for the production of C9 chemicals from oleic acid, Metab. Eng. 54(2019) 137-144. [91] S.U. Kim, K.R. Kim, J.W. Kim, S. Kim, Y.U. Kwon, D.K. Oh, J.B. Park, Microbial synthesis of plant oxylipins from γ-linolenic acid through designed biotransformation pathways, J. Agric. Food Chem. 63(2015) 2773-2781. [92] E.Y. Jeon, J.W. Song, H.J. Cha, S.M. Lee, J. Lee, J.B. Park, Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane, J. Biotechnol. 281(2018) 161-167. [93] E.Y. Jeon, J.H. Seo, W.R. Kang, M.J. Kim, J.H. Lee, D.K. Oh, J.B. Park, Simultaneous enzyme/whole-cell biotransformation of plant oils into C9 carboxylic acids, ACS Catal. 6(2016) 7547-7553. [94] W.R. Kang, M.J. Seo, J.U. An, K.C. Shin, D.K. Oh, Production of δ-decalactone from linoleic acid via 13-hydroxy-9(Z)-octadecenoic acid intermediate by one-pot reaction using linoleate 13-hydratase and whole Yarrowia lipolytica cells, Biotechnol. Lett. 38(2016) 817-823. [95] Q. Cheng, S.M. Thomas, K. Kostichka, J.R. Valentine, V. Nagarajan, Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by invitro transposition, J. Bacteriol. 182(2000) 4744-4751. [96] H.J. Cha, E.J. Seo, J.W. Song, H.J. Jo, A.R. Kumar, J.B. Park, Simultaneous enzyme/whole-cell biotransformation of C18 ricinoleic acid into (R)-3-hydroxynonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid, Adv. Synth. Catal. 360(2018) 696-703. [97] E.J. Seo, Y.J. Yeon, J.H. Seo, J.H. Lee, J.P. Bongol, Y. Oh, J.M. Park, S.M. Lim, C.G. Lee, J.B. Park, Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid, Bioresour. Technol. 251(2018) 288-294. [98] D.S. Lee, J.W. Song, M. Voss, E. Schuiten, R.K. Akula, Y.U. Kwon, U. Bornscheuer, J.B. Park, Enzyme cascade reactions for the biosynthesis of long chain aliphatic amines from renewable fatty acids, Adv. Synth. Catal. 361(2019) 1359-1367. [99] M.J.L.J. Fürst, A. Gran-Scheuch, F.S. Aalbers, M.W. Fraaije, Baeyer-Villiger monooxygenases:Tunable oxidative biocatalysts, ACS Catal. 9(2019) 11207-11241. [100] R. Kourist, U.T. Bornscheuer, Biocatalytic synthesis of optically active tertiary alcohols, Appl. Microbiol. Biotechnol. 91(2011) 505-517. [101] Z. Wu, S.B.J. Kan, R.D. Lewis, B.J. Wittmann, F.H. Arnold, Machine learning-assisted directed protein evolution with combinatorial libraries, Proc. Natl. Acad. Sci. U. S. A. 116(2019) 8852-8858. [102] K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering, Nat. Methods 16(2019) 687-694. [103] U.T. Bornscheuer, The fourth wave of biocatalysis is approaching, Philos. Trans. A Math. Phys. Eng. Sci. 376(2018) 20170063. |
[1] | Wenqiang Li, Wentao Sun, Chun Li. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products[J]. 中国化学工程学报, 2021, 29(2): 62-73. |
[2] | Nan Jiang, Lianju Ma, Yuan Lu. Cell-free synthetic biology in the new era of enzyme engineering[J]. 中国化学工程学报, 2020, 28(11): 2810-2816. |
[3] | Jintao Guan, Chaofei Han, Yixin Guan, Songhong Zhang, Junxian Yun, Shanjing Yao. Optimizational production of phenyllactic acid by a Lactobacillus buchneri strain via uniform design with overlay sampling methodology[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 418-425. |
[4] | 陈秉梅, 许小平, 侯志国, 李忠琴, 阮文兵. Identification and Mutagenesis of a New Isolated Strain Bacillus sp. B26 for Producing(R)-α-Hydroxyphenylacetic Acid [J]. , 2011, 19(4): 636-643. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||