[1] A. Mosblech, I. Feussner, I. Heilmann, Oxylipins:Structurally diverse metabolites from fatty acid oxidation, Plant Physiol. Biochem. 47(2009) 511-517. [2] M. Gabbs, S. Leng, J.G. Devassy, M. Monirujjaman, H.M. Aukema, Advances in our understanding of oxylipins derived from dietary PUFAs, Adv. Nutr. 6(2015) 513-540. [3] D.G. Hayes, Enzyme-catalyzed modification of oilseed materials to produce ecofriendly products, J. Am. Oil Chem. Soc. 81(2004) 1077-1103. [4] J.A. Zerkowski, D.K.Y. Solaiman, Synthesis of polyfunctional fatty amines from sophorolipid-derived17-hydroxy oleic acid, J. Am. Oil Chem. Soc. 83(2006) 621-628. [5] K.R. Kim, D.K. Oh, Production of hydroxy fatty acids by microbial fatty acidhydroxylation enzymes, Biotechnol. Adv. 31(2013) 1473-1485. [6] A. Beopoulos, J. Verbeke, F. Bordes, M. Guicherd, M. Bressy, A. Marty, J.M. Nicaud, Metabolic engineering for ricinoleic acid production in the oleaginous yeast Yarrowia lipolytica, Appl. Microbiol. Biotechnol. 98(2014) 251-262. [7] J. Ogawa, New lipid science in our inner ecosystem, Eur. J. Lipid Sci. Technol. 117(2015) 577-578. [8] J.O. Metzger, U. Bornscheuer, Lipids as renewable resources:Current state of chemical and biotechnological conversion and diversification, Appl. Microbiol. Biotechnol. 71(2006) 13-22. [9] D.S. Ogunniyi, Castor oil:A vital industrial raw material, Bioresour. Technol. 97(2006) 1086-1091. [10] H. Mutlu, M.A.R. Meier, Castor oil as a renewable resource for the chemical industry, Eur. J. Lipid Sci. Technol. 112(2009) 10-30. [11] F. Zhang, C. Huang, T. Xu, Production of sebacic acid using two-phase bipolar membrane electrodialysis, Ind. Eng. Chem. Res. 48(2009) 7482-7488. [12] A. Koeckritz, A. Martin, Synthesis of azelaic acid from vegetable oil-based feedstocks, Eur. J. Lipid Sci. Technol. 113(2011) 83-91. [13] J.W. Song, E.Y. Jeon, D.H. Song, H.Y. Jang, U.T. Bornscheuer, D.K. Oh, J.B. Park, Multistep enzymatic synthesis of long-chain alpha, omega-dicarboxylic and omegahydroxycarboxylic acids from renewable fatty acids and plant oils, Angew. Chem. Int. Ed. Engl. 52(2013) 2534-2537. [14] T. Mi, Y. Dong, U. Santhanam, N. Huang, Niacinamide and 12-hydroxystearic acid prevented benzo(a)pyrene and squalene peroxides induced hyperpigmentation in skin equivalent, Exp. Dermatol. 28(2019) 742-746. [15] C.T. Hou, Biotransformation of unsaturated fatty acids to industrial products, Adv. Appl. Microbiol. 47(2000) 201-220. [16] C.T. Hou, Biotechnology for fats and oils:New oxygenated fatty acids, New Biotechnol. 26(2009) 2-10. [17] N. de Lima da Silva, M.R. Wolf-Maciel, C.B. Batistella, R. Maciel Filho, Optimization of biodiesel production from castor oil, Appl. Biochem. Biotechnol. 129-132(2006) 405-414. [18] S. Huf, S. Kruegener, T. Hirth, S. Rupp, S. Zibek, Biotechnological synthesis of longchain dicarboxylic acids as building blocks for polymers, Eur. J. Lipid Sci. Technol. 113(2011) 548-561. [19] C. Liu, F. Liu, J. Cai, W. Xie, T.E. Long, S.R. Turner, A. Lyons, R.A. Gross, Polymers from fatty acids:Poly(ω-hydroxyl tetradecanoic acid) synthesis and physicomechanical studies, Biomacromolecules 12(2011) 3291-3298. [20] T.K. Tran, P. Kumar, H.R. Kim, C.T. Hou, B.S. Kim, Microbial conversion of vegetable oil to hydroxy fatty acid and its application to bio-based polyurethane synthesis, Polymers 10(2018) 927/921-927/916. [21] G.A. Burdock, I.G. Carabin, J.C. Griffiths, Toxicology and pharmacology of sodium ricinoleate, Food Chem. Toxicol. 44(2006) 1689-1698. [22] A. Endrizzi, Y. Pagot, A. LeClainche, J.-M. Nicaud, J.-M. Elin, Production of lactones and peroxisomal beta-oxidation in yeasts, Crit. Rev. Biotechnol. 16(1996) 301-329. [23] Y. Wache, M. Aguedo, J.M. Nicaud, J.M. Belin, Catabolism of hydroxyacids and biotechnological production of lactones by Yarrowia lipolytica, Appl. Microbiol. Biotechnol. 61(2003) 393-404. [24] Y. Wache, F. Husson, G. Feron, J.M. Belin, Yeast as an efficient biocatalyst for the production of lipid-derived flavours and fragrances, Antonie Van Leeuwenhoek 89(2006) 405-416. [25] C.D. Lendrum, B. Ingham, B. Lin, M. Meron, M.F. Toney, K.M. McGrath, Nonequilibrium 2-hydroxyoctadecanoic acid monolayers:Effect of electrolytes, Langmuir 27(2011) 4430-4438. [26] I. Shureiqi, W. Jiang, X. Zuo, Y. Wu, J.B. Stimmel, L.M. Leesnitzer, J.S. Morris, H.-Z. Fan, S.M. Fischer, S.M. Lippman, The 15-lipoxygenase-1 product 13-Shydroxyoctadecadienoic acid down-regulatesPPAR-δ to induce apoptosis in colorectal cancer cells, Proc. Natl. Acad. Sci. U. S. A. 100(2003) 9968-9973. [27] T. Itoh, L. Fairall, K. Amin, Y. Inaba, A. Szanto, B.L. Balint, L. Nagy, K. Yamamoto, J.W.R. Schwabe, Structural basis for the activation of PPARγ by oxidized fatty acids, Nat. Struct. Mol. Biol. 15(2008) 924-931. [28] J.J. Moreno, New aspects of the role of hydroxyeicosatetraenoic acids in cell growth and cancer development, Biochem. Pharmacol. 77(2009) 1-10. [29] S. Paul, C.T. Hou, S.C. Kang, α-Glucosidase inhibitory activities of 10-hydroxy-8(E)-octadecenoic acid:an intermediate of bioconversion of oleic acid to 7,10-dihydroxy-8(E)-octadecenoic acid, New Biotechnol. 27(2010) 419-423. [30] H.B. Tian, Y. Lu, S.P. Shah, S. Hong, 14S, 21R-Dihydroxydocosahexaenoic acid remedies impaired healing and mesenchymal stem cell functions in diabetic wounds, J. Biol. Chem. 286(2011) 4443-4453. [31] T. Nagai, Y. Shimizu, T. Shirahata, T. Sunazuka, H. Kiyohara, S. Omura, H. Yamada, Oral adjuvant activity for nasal influenza vaccines caused by combination of two trihydroxy fatty acid stereoisomers from the tuber of Pinellia ternata, Int. Immunopharmacol. 10(2010) 655-661. [32] J.M. Schwab, C.N. Serhan, Lipoxins and new lipid mediators in the resolution of inflammation, Curr. Opin. Pharmacol. 6(2006) 414-420. [33] C.N. Serhan, N. Chiang, T.E. Van Dyke, Resolving inflammation:dual antiinflammatory and pro-resolution lipid mediators, Nat. Rev. Immunol. 8(2008) 349-361. [34] M.J. Stables, D.W. Gilroy, Old and new generation lipid mediators in acute inflammation and resolution, Prog. Lipid Res. 50(2011) 35-51. [35] N. Chiang, G. Fredman, F. Baeckhed, S.F. Oh, T. Vickery, B.A. Schmidt, C.N. Serhan, Infection regulates pro-resolving mediators that lower antibiotic requirements, Nature 484(2012) 524-528. [36] M.M. Yore, I. Syed, P.M. Moraes-Vieira, M.A. Herman, J. Lee, O.D. Peroni, A.S. Dhaneshwar, T. Zhang, E.A. Homan, S. Chen, R.T. Patel, T.E. McGraw, A. Hammarstedt, U. Smith, A. Saghatelian, B.B. Kahn, Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects, Cell 159(2014) 318-332. [37] O. Kuda, M. Brezinova, M. Rombaldova, B. Slavikova, M. Posta, P. Beier, P. Janovska, J. Veleba, J. Kopecky, E. Kudova, T. Pelikanova, Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties, Diabetes 65(2016) 2580-2590. [38] M.J. Kolar, S.S. Kamat, W.H. Parsons, E.A. Homan, T. Maher, O.D. Peroni, I. Syed, K. Fjeld, A. Molven, B.B. Kahn, B.F. Cravatt, A. Saghatelian, Branched fatty acid esters of hydroxy fatty acids are preferred substrates of the MODY8 protein carboxyl ester lipase, Biochemistry 55(2016) 4636-4641. [39] B.B. Kahn,. Saghatelian, I. Syed, Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAS) for Use in the Treatment of Type 1 Diabetes, US Pat., US2019/015276A1(2019). [40] P.M. Moraes-Vieira, A. Saghatelian, B.B. Kahn, GLUT4 expression in adipocytes regulates De Novo lipogenesis and levels of a novel class of lipids with antidiabetic and anti-inflammatory effects, Diabetes 65(2016) 1808-1815. [41] J. Lee, P.M. Moraes-Vieira, A. Castoldi, P. Aryal, E.U. Yee, C. Vickers, O. Parnas, C.J. Donaldson, A. Saghatelian, B.B. Kahn, Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses, J. Biol. Chem. 291(2016) 22207-22217. [42] W.H. Parsons, M.J. Kolar, S.S. Kamat, A.B. Cognetta III, J.J. Hulce, E. Saez, B.B. Kahn, A. Saghatelian, B.F. Cravatt, AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs, Nat. Chem. Biol. 12(2016) 367-372. [43] M.J. Kolar, S. Konduri, H. Wang, C. McNerlin, D. Siegel, T. Chang, A. Saghatelian, L. Ohlsson, M. Harrod, Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals, J. Biol. Chem. 294(2019) 10698-10707. [44] J.P. Rodriguez, C. Guijas, A.M. Astudillo, J.M. Rubio, M.A. Balboa, J. Balsinde, Sequestration of 9-hydroxystearic acid in FAHFA (Fatty Acid Esters of Hydroxy Fatty Acids) as a protective mechanism for colon carcinoma cells to avoid apoptotic cell death, Cancers 11(2019) 524. [45] J. Jin, U. Hanefeld, The selective addition of water to C=C bonds; enzymes are the best chemists, Chem. Commun. 47(2011) 2502-2510. [46] V. Resch, U. Hanefeld, The selective addition of water, Catalysis Science & Technology 5(2015) 1385-1399. [47] C.N. Cornell, M.S. Sigman, Recent progress in wacker oxidations:Moving toward molecular oxygen as the sole oxidant, Inorg. Chem. 46(2007) 1903-1909. [48] R.M. Demming, S.C. Hammer, B.M. Nestl, S. Gergel, S. Fademrecht, J. Pleiss, B. Hauer, Asymmetric enzymatic hydration of unactivated, aliphatic alkenes, Angew. Chem., Int. Ed. 58(2019) 173-177. [49] A. Hiseni, I.W.C.E. Arends, L.G. Otten, New cofactor-independent hydration biocatalysts:Structural, biochemical, and biocatalytic characteristics of carotenoid and oleate hydratases, ChemCatChem 7(2015) 29-37. [50] M. Engleder, H. Pichler, On the current role of hydratases in biocatalysis, Appl. Microbiol. Biotechnol. 102(2018) 5841-5858. [51] A.J. Boersma, D. Coquiere, D. Geerdink, F. Rosati, B.L. Feringa, G. Roelfes, Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst, Nat. Chem. 2(2010) 991-995. [52] S.Q. Wang, Z.W. Wang, L.C. Yang, J.L. Dong, C.Q. Chi, D.N. Sui, Y.Z. Wang, J.G. Ren, M.Y. Hung, Y.Y. Jiang, A novel efficient route for preparation of chiral β-hydroxycarboxylic acid:Asymmetric hydration of unsaturated carboxylic acids catalyzed by heterobimetallic complex wool-palladium-cobalt, J. Mol. Catal. A:Chem. 264(2007) 60-65. [53] I. Schnapperelle, W. Hummel, H. Groeger, Formal asymmetric hydration of non-activated alkenes in aqueous medium through a "chemoenzymatic catalytic system", Chem. Eur. J. 18(2012) 1073-1076(S1073/1071-S1073/1023). [54] H. Groeger, Hydroxy functionalization of non-activated C-H and C=C bonds:New perspectives for the synthesis of alcohols through biocatalytic processes, Angew. Chem. Int. Ed. 53(2014) 3067-3069. [55] L.E. Bevers, M.W.H. Pinkse, P.D.E.M. Verhaert, W.R. Hagen, Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond, J. Bacteriol. 191(2009) 5010-5012. [56] S. Kishino, M. Takeuchi, S.B. Park, A. Hirata, N. Kitamura, J. Kunisawa, H. Kiyono, R. Iwamoto, Y. Isobe, M. Arita, H. Arai, K. Ueda, J. Shima, S. Takahashi, K. Yokozeki, S. Shimizu, J. Ogawa, Polyunsaturated fatty acid saturation by gut lactic acid bacteria affecting host lipid composition, Proc. Natl. Acad. Sci. U. S. A. 110(2013) 17808-17813. [57] L.L. Wallen, R.G. Benedict, R.W. Jackson, The microbiological production of 10-hydroxystearic acid from oleic acid, Arch. Biochem. Biophys. 99(1962) 249-253. [58] J. Schmid, L. Steiner, S. Fademrecht, J. Pleiss, K.B. Otte, B. Hauer, Biocatalytic study of novel oleate hydratases, J. Mol. Catal. B:Enzym. 133(2016) S243-S249. [59] A. Volkov, A. Liavonchanka, O. Kamneva, T. Fiedler, C. Goebel, B. Kreikemeyer, I. Feussner, Myosin cross-reactive antigen of Streptococcus pyogenes M49 encodes a fatty acid double bond hydratase that plays a role in oleic acid detoxification and bacterial virulence, J. Biol. Chem. 285(2010) 10353-10361. [60] E. Rosberg-Cody, A. Liavonchanka, C. Gobel, R.P. Ross, O. O'Sullivan, G.F. Fitzgerald, I. Feussner, C. Stanton, Myosin-cross-reactive antigen (MCRA) protein from Bifidobacterium breve is a FAD-dependent fatty acid hydratase which has a function in stress protection, BMC Biochem. 12(2011) 9. [61] B.N. Kim, Y.C. Joo, Y.S. Kim, K.R. Kim, D.K. Oh, Production of 10-hydroxystearic acid from oleic acid and olive oil hydrolyzate by an oleate hydratase from Lysinibacillus fusiformis, Appl. Microbiol. Biotechnol. 95(2012) 929-937. [62] M.H. Seo, K.R. Kim, D.K. Oh, Production of a novel compound, 10,12-dihydroxystearic acid from ricinoleic acid by an oleate hydratase from Lysinibacillus fusiformis, Appl. Microbiol. Biotechnol. 97(2013) 8987-8995. [63] Y.C. Joo, K.W. Jeong, S.J. Yeom, Y.S. Kim, Y. Kim, D.K. Oh, Biochemical characterization and FAD-binding analysis of oleate hydratase from Macrococcus caseolyticus, Biochimie 94(2012) 907-915. [64] Y.C. Joo, E.S. Seo, Y.S. Kim, K.R. Kim, J.B. Park, D.K. Oh, Production of 10-hydroxystearic acid from oleic acid by whole cells of recombinant Escherichia coli containing oleate hydratase from Stenotrophomonas maltophilia, J. Biotechnol. 158(2012) 17-23. [65] B. Yang, H. Chen, Y. Song, Y.Q. Chen, H. Zhang, W. Chen, Myosin-cross-reactive antigens from four different lactic acid bacteria are fatty acid hydratases, Biotechnol. Lett. 35(2013) 75-81. [66] A. Volkov, S. Khoshnevis, P. Neumann, C. Herrfurth, D. Wohlwend, R. Ficner, I. Feussner, Crystal structure analysis of a fatty acid double-bond hydratase from Lactobacillus acidophilus, Acta Crystallogr. Sect. D:Biol. Crystallogr. 69(2013) 648-657. [67] K.J. O'Connell, M.O.C. Motherway, A.A. Hennessey, F. Brodhun, R.P. Ross, I. Feussner, C. Stanton, G.F. Fitzgerald, S.D. van, Identification and characterization of an oleate hydratase-encoding gene from Bifidobacterium breve, Bioengineered 4(2013) 313-321. [68] M. Takeuchi, S. Kishino, A. Hirata, S.-B. Park, N. Kitamura, J. Ogawa, Characterization of the linoleic acid Δ9 hydratase catalyzing the first step of polyunsaturated fatty acid saturation metabolism in Lactobacillus plantarumAKU 1009a, J. Biosci. Bioeng. 119(2015) 636-641. [69] A. Hirata, S. Kishino, M. Takeuchi, N. Kitamura, J. Ogawa, S.-B. Park, A novel unsaturated fatty acid hydratase toward C16 to C22 fatty acids from Lactobacillus acidophilus, J. Lipid Res. 56(2015) 1340-1350. [70] K.R. Kim, H.J. Oh, C.S. Park, S.H. Hong, J.Y. Park, D.K. Oh, Unveiling of novel regioselective fatty acid double bond hydratases from Lactobacillus acidophilus involved in the selective oxyfunctionalization of mono-and di-hydroxy fatty acids, Biotechnol. Bioeng. 112(2015) 2206-2213. [71] J. Ortega-Anaya, A. Hernandez-Santoyo, Functional characterization of a fatty acid double-bond hydratase from Lactobacillus plantarum and its interaction with biosynthetic membranes, Biochim. Biophys. Acta. Biomembr. 1848(2015) 3166-3174. [72] Y.Y. Chen, N.Y. Liang, J.M. Curtis, M.G. Ganzle, Characterization of linoleate 10-hydratase of Lactobacillus plantarum and novel antifungal metabolites, Front. Microbiol. 7(2016) 1561. [73] J. Lorenzen, R. Horscht, A. Waldow, F. Qoura, B. Loll, T. Brueck, Rhodococcus erythropolis oleate hydratase:a new member in the oleate hydratase family treebiochemical and structural studies, ChemCatChem 10(2018) 407-414. [74] W.R. Kang, M.J. Seo, K.C. Shin, J.B. Park, D.K. Oh, Comparison of biochemical properties of the original and newly identified oleate hydratases from Stenotrophomonas maltophilia, Appl. Environ. Microbiol. 83(2017) e03351-16. [75] W.R. Kang, M.J. Seo, K.C. Shin, J.B. Park, D.K. Oh, Gene cloning of an efficiency oleate hydratase from Stenotrophomonas nitritireducens for polyunsaturated fatty acids and its application in the conversion of plant oils to 10-hydroxy fatty acids, Biotechnol. Bioeng. 114(2017) 74-82. [76] A.K. Park, G.H. Lee, D.W. Kim, E.H. Jang, H.T. Kwon, Y.M. Chi, Crystal structure of oleate hydratase from Stenotrophomonas sp. KCTC 12332 reveals conformational plasticity surrounding the FAD binding site, Biochem. Biophys. Res. Commun. 499(2018) 772-776. [77] C. Subramanian, M.W. Frank, J.L. Batte, S.G. Whaley, C.O. Rock, Oleate hydratase from Staphylococcus aureus protects against palmitoleic acid, the major antimicrobial fatty acid produced by mammalian skin, J. Biol. Chem. 294(2019) 9285-9294. [78] Y.X. Wu, J. Pan, H.L. Yu, J.H. Xu, Enzymatic synthesis of 10-oxostearic acid in high space-time yield via cascade reaction of a new oleate hydratase and an alcohol dehydrogenase, Journal of Biotechnology 2(2019) 100008. [79] B.E. Eser, M. Poborsky, R. Dai, S. Kishino, A. Ljubic, M. Takeuchi, C. Jacobsen, J. Ogawa, P. Kristensen, Z. Guo, Rational engineering of hydratase from Lactobacillus acidophilus reveals critical residues directing substrate specificity and regioselectivity, ChemBioChem 21(2020) 550-563. [80] E.Y. Jeon, J.H. Lee, K.M. Yang, Y.C. Joo, D.K. Oh, J.B. Park, Bioprocess engineering to produce 10-hydroxystearic acid from oleic acid by recombinant Escherichia coli expressing the oleate hydratase gene of Stenotrophomonas maltophilia, Process Biochem. 47(2012) 941-947. [81] M. Engleder, T. Pavkov-Keller, A. Emmerstorfer, A. Hromic, S. Schrempf, G. Steinkellner, T. Wriessnegger, E. Leitner, G.A. Strohmeier, I. Kaluzna, D. Mink, M. Schuermann, S. Wallner, P. Macheroux, K. Gruber, H. Pichler, Structure-based mechanism of oleate hydratase from Elizabethkingia meningoseptica, ChemBioChem 16(2015) 1730-1734. [82] Y. Zhang, Y.Q. Wu, N. Xu, Q. Zhao, H.L. Yu, J.H. Xu, Engineering of cyclohexanone monooxygenase for the enantioselective synthesis of (S)-omeprazole, ACS Sustain. Chem. Eng. 7(2019) 7218-7226. [83] V. Joosten, W.J. van Berkel, Flavoenzymes, Curr. Opin. Chem. Biol. 11(2007) 195-202. [84] R.M. Demming, K.B. Otte, B.M. Nestl, B. Hauer, Optimized reaction conditions enable the hydration of non-natural substrates by the oleate hydratase from Elizabethkingia meningoseptica, ChemCatChem 9(2017) 758-766. [85] M. Engleder, G.A. Strohmeier, H. Weber, G. Steinkellner, E. Leitner, M. Mueller, D. Mink, M. Schuermann, K. Gruber, H. Pichler, Evolving the promiscuity of Elizabethkingia meningoseptica oleate hydratase for the regio-and stereoselective hydration of oleic acid derivatives, Angew. Chem., Int. Ed. 58(2019) 7480-7484. [86] A. Latrasse, S. Paitier, B. Lachot, P. Bonnarme, G. Feron, A. Durand, J.L. Le Quere, Conversion of oleic acid to 10-hydroxystearic acid by Nocardia paraffinae, Biotechnol. Lett. 19(1997) 715-718. [87] B.N. Kim, S.J. Yeom, D.K. Oh, Conversion of oleic acid to 10-hydroxystearic acid by whole cells of Stenotrophomonas nitritireducens, Biotechnol. Lett. 33(2011) 993-997. [88] J.O. Ahn, M.J. Jang, H.W. Lee, H.W. Lee, ImmobilizedLipid Hydratase and Method for Preparing Hydroxy Fatty Acids Using Thereof, Korea Research Institute of Bioscience and Biotechnology, Inwoo Corp., S. Korea, 2015. [89] A. Todea, A. Hiseni, L.G. Otten, I.W.C.E. Arends, F. Peter, C.G. Boeriu, Increase of stability of oleate hydratase by appropriate immobilization technique and conditions, J. Mol. Catal. B Enzym. 119(2015) 40-47. [90] E.J. Seo, C.W. Kang, J.M. Woo, S. Jang, Y.J. Yeon, G.Y. Jung, J.B. Park, Multi-level engineering of Baeyer-Villigermonooxygenase-basedEscherichia coli biocatalysts for the production of C9 chemicals from oleic acid, Metab. Eng. 54(2019) 137-144. [91] S.U. Kim, K.R. Kim, J.W. Kim, S. Kim, Y.U. Kwon, D.K. Oh, J.B. Park, Microbial synthesis of plant oxylipins from γ-linolenic acid through designed biotransformation pathways, J. Agric. Food Chem. 63(2015) 2773-2781. [92] E.Y. Jeon, J.W. Song, H.J. Cha, S.M. Lee, J. Lee, J.B. Park, Intracellular transformation rates of fatty acids are influenced by expression of the fatty acid transporter FadL in Escherichia coli cell membrane, J. Biotechnol. 281(2018) 161-167. [93] E.Y. Jeon, J.H. Seo, W.R. Kang, M.J. Kim, J.H. Lee, D.K. Oh, J.B. Park, Simultaneous enzyme/whole-cell biotransformation of plant oils into C9 carboxylic acids, ACS Catal. 6(2016) 7547-7553. [94] W.R. Kang, M.J. Seo, J.U. An, K.C. Shin, D.K. Oh, Production of δ-decalactone from linoleic acid via 13-hydroxy-9(Z)-octadecenoic acid intermediate by one-pot reaction using linoleate 13-hydratase and whole Yarrowia lipolytica cells, Biotechnol. Lett. 38(2016) 817-823. [95] Q. Cheng, S.M. Thomas, K. Kostichka, J.R. Valentine, V. Nagarajan, Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by invitro transposition, J. Bacteriol. 182(2000) 4744-4751. [96] H.J. Cha, E.J. Seo, J.W. Song, H.J. Jo, A.R. Kumar, J.B. Park, Simultaneous enzyme/whole-cell biotransformation of C18 ricinoleic acid into (R)-3-hydroxynonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid, Adv. Synth. Catal. 360(2018) 696-703. [97] E.J. Seo, Y.J. Yeon, J.H. Seo, J.H. Lee, J.P. Bongol, Y. Oh, J.M. Park, S.M. Lim, C.G. Lee, J.B. Park, Enzyme/whole-cell biotransformation of plant oils, yeast derived oils, and microalgae fatty acid methyl esters into n-nonanoic acid, 9-hydroxynonanoic acid, and 1,9-nonanedioic acid, Bioresour. Technol. 251(2018) 288-294. [98] D.S. Lee, J.W. Song, M. Voss, E. Schuiten, R.K. Akula, Y.U. Kwon, U. Bornscheuer, J.B. Park, Enzyme cascade reactions for the biosynthesis of long chain aliphatic amines from renewable fatty acids, Adv. Synth. Catal. 361(2019) 1359-1367. [99] M.J.L.J. Fürst, A. Gran-Scheuch, F.S. Aalbers, M.W. Fraaije, Baeyer-Villiger monooxygenases:Tunable oxidative biocatalysts, ACS Catal. 9(2019) 11207-11241. [100] R. Kourist, U.T. Bornscheuer, Biocatalytic synthesis of optically active tertiary alcohols, Appl. Microbiol. Biotechnol. 91(2011) 505-517. [101] Z. Wu, S.B.J. Kan, R.D. Lewis, B.J. Wittmann, F.H. Arnold, Machine learning-assisted directed protein evolution with combinatorial libraries, Proc. Natl. Acad. Sci. U. S. A. 116(2019) 8852-8858. [102] K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering, Nat. Methods 16(2019) 687-694. [103] U.T. Bornscheuer, The fourth wave of biocatalysis is approaching, Philos. Trans. A Math. Phys. Eng. Sci. 376(2018) 20170063. |