[1] A. Bejan, A study of entropy generation in fundamental convective heat transfer, J. Heat Transf. 101 (1979) 718-725. [2] A. Bejan, The thermodynamic design of heat and mass transfer processes and devices, Int. J. Heat Fluid Flow 8 (1987) 258-276. [3] A. Reveillere, A.C. Baytas, Minimum entropy generation for laminar boundary layer flow over a permeable plate, Int. J. Exergy 7 (2010) 164-177. [4] R. Muhammad, M.I. Khan, M. Jameel, N.B. Khan, Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation, Comput. Methods Prog. Biomed. 188 (2020) 105298. [5] R. Muhammad, M.I. Khan, N.B. Khan, M. Jameel, Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation, Comput. Methods Prog. Biomed. 189 (2020) 105294. [6] D. Srinivasacharya, K.H. Bindu, Entropy generation due to micropolar fluid flow between concentric cylinders with slip and convective boundary conditions, Ain Shams Engineering Journal 9 (2018) 245-255. [7] M. Rashid, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition, J. Mol. Liq. 276 (2019) 441-452. [8] S.E. Ahmed, M.A. Mansour, A. Mahdy, S.S. Mohamed, Entropy generation due to double diffusive convective flow of Casson fluids over nonlinearity stretching sheets with slip conditions, Eng. Sci. Technol. 20 (2017) 1553-1562. [9] M.I. Khan, T. Hayat, M.I. Khan, M. Waqas, A. Alsaedi, Numerical simulation of hydromagnetic mixed convective radiative slip flow with variable fluid properties: a mathematical model for entropy generation, J. Phys. Chem. Solids 125 (2019) 153-164. [10] M.G. Sobamowo, A.T. Akinshilo, Analysis of flow, heat transfer and entropy generation in a pipe conveying fourth grade fluid with temperature dependent viscosities and internal heat generation, J. Mol. Liq. 241 (2017) 188-198. [11] L.J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik (ZAMP) 21 (1970) 645-647. [12] B.C. Sakiadis, Boundary-layer behavior on continuous solid surfaces: I. Boundary layer equations for two-dimensional and axisymmetric flow, AIChE J. 7 (1961) 26-28. [13] M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Colloid Interface Sci. 498 (2017) 85-90. [14] M.E. Ali, The effect of lateral mass flux on the natural convection boundary layers induced by a heated vertical plate embedded in a saturated porous medium with internal heat generation, Int. J. Therm. Sci. 46 (2007) 157-163. [15] S. Abel, K.V. Prasad, A. Mahaboob, Buoyancy force and thermal radiation effects in MHD boundary layer visco-elastic fluid flow over continuously moving stretching surface, Int. J. Therm. Sci. 44 (2005) 465-476. [16] N.S. Akbar, S. Nadeem, Combined effects of heat and chemical reactions on the peristaltic flow of carreau fluid model in a diverging tube, Int. J. Nonlin. Mech. 67 (2011) 1818-1832. [17] M.M. Nandeppanavar, K. Vajravelu, M.S. Abel, M.N. Siddalingappa, MHD flow and heat transfer over a stretching surface with variable thermal conductivity and partial slip, Meccnica 48 (2013) 1451-1464. [18] T.C. Chaim, Heat transfer in a fluid with variable thermal conductivity over a linearly stretching sheet, Acta Mech. 129 (1998) 63-72. [19] R. Cortell, Viscous flow and heat transfer over a nonlinearly stretching sheet, Appl. Math. Comput. 184 (2007) 864-873. [20] P. Vyas, A. Ranjan, Dissipative MHD boundary-layer flow in a porous medium over a sheet stretching nonlinearly in the presence of radiation, Appl. Math. Sci. 4 (2010) 3133-3142. [21] A.M. Salem, R. Fathy, Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation, Chinese Physics B, B 26 (2012) 1-11. [22] C.H. Chen, Effect of viscous dissipation on heat transfer in a non-Newtonian liquid film over an unsteady stretching sheet, J. Non-Newtonian Fluid Mech. 135 (2006) 128-135. [23] M.I. Khan, S. Qayyum, T. Hayat, A. Alsaedi, Entropy generation minimization and statistical declaration with probable error for skin friction coefficient and Nusselt number, Chin. J. Phys. 56 (2018) 1525-1546. [24] T. Hayat, M.I. Khan, M. Farooq, N. Gull, A. Alsaedi, Unsteady three-dimensional mixed convection flow with variable viscosity and thermal conductivity, J. Mol. Liq. 223 (2016) 1297-1310. [25] S. Ahmad, M.I. Khan, T. Hayat, M.I. Khan, A. Alsaedi, Entropy generation optimization and unsteady squeezing flow of viscous fluid with five different shapes of nanoparticles, Colloids Surf. A Physicochem. Eng. Asp. 554 (2018) 197-210. [26] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, in: Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, 66, 99-105(1995). [27] P.K. Nagarajan, J. Subramani, S. Suyambazhahan, R. Sathyamurthy, Nanofluids for solar collector applications: a review, Energy Procedia 61 (2014) 2416-2434. [28] J. Buongiorno, L.W. Hu, S.J. Kim, R. Hannink, B. Truong, E. Forrest, Nanofluids for enhanced economics and safety of nuclear reactors: an evaluation of the potential features, issues and research gaps, American Nuclear Society (ANS) 162 (2008) 80-91. [29] R. Saidur, K.Y. Leong, H. Mohammad, A review on applications and challenges of nanofluids, Renew. Sustain. Energy Rev. 15 (2011) 1646-1668. [30] Z.H. Liu, Y.Y. Li, A new frontier of nanofluid research-application of nano-fluids in heat pipes, Int. J. Heat Mass Transf. 55 (2012) 6786-6797. [31] J. Buongiorno, Convective transport in nanofluids, J. Heat Transf. 128 (2006) 240-250. [32] A.V. Kuznetsov, D.A. Nield, Natural convective boundary-layer flow of a nanofluid past a vertical plate, Int. J. Therm. Sci. 49 (2010) 243-247. [33] D.A. Nield, A.V. Kuznetsov, Thermal instability in a porous medium layer saturated by a nanofluid, Int. J. Heat Mass Transf. 52 (2009) 5796-5801. [34] T. Hayat, M.Z. Kayani, A. Alsaedi, M.I. Khan, I. Ahmad, Mixed convective threedimensional flow of Williamson nanofluid subject to chemical reaction, Int. J. Heat Mass Transf. 127 (2018) 422-429. [35] A. Jamaludin, K. Naganthran, R. Nazar, I. Pop, MHD mixed convection stagnation-point flow of Cu-Al2O3/water hybrid nanofluid over a permeable stretching/shrinking surface with heat source/sink, European J. Mech. -B/Fluids 84 (2020) 71-80. [36] S.Z. Abbas, W.A. Khan, S. Kadry, M.I. Khan, M. Waqas, M.I. Khan, Entropy optimized Darcy-Forchheimer nanofluid (silicon dioxide, molybdenum disulfide) subject to temperature dependent viscosity, Comput. Methods Prog. Biomed. 190 (2020) 105363. [37] E.H. Aly, I. Pop, MHD flow and heat transfer near stagnation point over a stretching/shrinking surface with partial slip and viscous dissipation: hybrid nanofluid versus nanofluid, Powder Technol. 3671 (2020) 192-205. [38] S.Z. Abbas, M.I. Khan, S. Kadry, W.A. Khan, M. Israr-Ur-Rehman, M. Waqas, Fully developed entropy optimized second order velocity slip MHD nanofluid flow with activation energy, Comput. Methods Prog. Biomed. 190 (2020) 105362. [39] U. Khan, A. Shafiq, A. Zaib, D. Baleanu, Hybrid nanofluid on mixed convective radiative flow from an irregular variably thick moving surface with convex and concave effects, Case Stud. Therm. Eng. 21 (2020) 100660. [40] M.I. Khan, F. Alzahrani, A. Hobiny, Z. Ali, Modeling of Cattaneo-Christov double diffusions (CCDD) in Williamson nanomaterial slip flow subject to porous medium, J. Mater. Res. Tech. 9 (2020) 6172-6177. [41] T.V. Karman, Uber laminare and turbulente reibung, Z. Angew. Math. Phys. 1 (1921) 233-252. [42] K. Stewartson, On the flow between two rotating coaxial disks, Math. Proc. Camb. Philos. Soc. 49 (1953) 333-341. [43] M. Imtiaz, T. Hayat, A. Alsaedi, B. Ahmad, Convective flow of carbon nanotubes between rotating stretchable disks with thermal radiation effects, Int. J. Heat Mass Transf. 101 (2016) 948-957. |