[1] D. Lohse, X. Zhang, Surface nanobubbles and nanodroplets, Rev. Mod. Phys. 87 (2015) 981-1035. [2] M. Alheshibri, J. Qian, M. Jéhannin, V.S. Craig, A history of nanobubbles, Langmuir Acs J. Surf. Colloids 32 (2016) 11086-11100. [3] J.L. Parker, P.M. Claesson, P. Attard, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces, J. Phys. Chem. 98 (1994) 8468-8480. [4] S.T. Lou, Z.Q. Ouyang, Y. Zhang, X.J. Li, J. Hu, M.Q. Li, F.J. Yang, Nanobubbles on solid surface imaged by atomic force microscopy, J. Vacuum Sci. Technol. B Microelectron. Nanometer Struct. 18 (2000) 2573-2575. [5] N. Ishida, T. Inoue, M. Miyahara, K. Higashitani, Nano bubbles on a hydrophobic surface in water observed by tapping-mode atomic force microscopy, Langmuir 16 (2000) 6377-6380. [6] F.Y. Ushikubo, T. Furukawa, R. Nakagawa, M. Enari, Y. Makino, Y. Kawagoe, T. Shiina, S. Oshita, Evidence of the existence and the stability of nano-bubbles in water, Colloid Surf. A Physicochem. Eng. Asp. 361 (2010) 31-37. [7] D. Eugène, A. Sergey, S. Sergey, M. Alain, Long-lived submicrometric bubbles in very diluted alkali halide water solutions, Phys. Chem. Chem. Phys. 14 (2012) 4125-4132. [8] L. Shu, Y. Kawagoe, Y. Makino, S. Oshita, Effects of nanobubbles on the physicochemical properties of water: The basis for peculiar properties of water containing nanobubbles, Chem. Eng. Sci. 93 (2013) 250-256. [9] K. Ohgaki, N.Q. Khanh, Y. Joden, A. Tsuji, T. Nakagawa, Physicochemical approach to nanobubble solutions, Chem. Eng. Sci. 65 (2010) 1296-1300. [10] Y.L. Ying, Y.X. Hu, R. Gao, R.J. Yu, Z. Gu, L.P. Lee, Y.T. Long, Asymmetric nanopore electrode based amplification for electron transfer imaging in live cells, J. Am. Chem. Soc. 140 (2018) 5385-5392. [11] Z. Gao, A.M. Kennedy, D.A. Christensen, N.Y. Rapoport, Drug-loaded nano/ microbubbles for combining ultrasonography and targeted chemotherapy, Ultrasonics 48 (2008) 260-270. [12] R. Gao, Y.L. Ying, Y.X. Hu, Y.J. Li, Y.T. Long, A wireless bipolar nanopore electrode for single small molecule detection, Anal. Chem. 89 (2017) 7382-7387. [13] X.M. Lu, Y. Bing, X.R. Zhang, Y. Kai, Y.Q. Ma, Molecular modeling of transmembrane delivery of paclitaxel by shock waves with nanobubbles, Appl. Phys. Lett. 110 (2017) 023701. [14] Y. Wang, X. Li, Y. Zhou, P. Huang, Y. Xu, Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery, Int. J. Pharm. 384 (2010) 148-153. [15] A. Sobhy, D. Tao, Nanobubble column flotation of fine coal particles and associated fundamentals, Int. J. Miner. Process. 124 (2013) 109-116. [16] H. Schubert, Nanobubbles, hydrophobic effect, heterocoagulation and hydrodynamics in flotation, Int. J. Miner. Process. 78 (2005) 11-21. [17] W. Zhihua, C. Hongbing, D. Yaming, M. Huiling, S. Jielin, C. Shenfu, V.S.J. Craig, H. Jun, Cleaning using nanobubbles: Defouling by electrochemical generation of bubbles, J. Colloid Interface Sci. 328 (2008) 10-14. [18] J. Zhu, H. An, M. Alheshibri, L. Liu, P.M. Terpstra, G. Liu, V.S. Craig, Cleaning with bulk nanobubbles, Langmuir 32 (2016) 11203-11211. [19] A. Agarwal, W.J. Ng, Y. Liu, Principle and applications of microbubble and nanobubble technology for water treatment, Chemosphere 84 (2011) 1175-1180. [20] T. Temesgen, T.T. Bui, M. Han, T.I. Kim, H. Park, Micro and nanobubble technologies as a new horizon for water-treatment techniques: A review, Adv. Colloid Interf. Sci. 246 (2017) 40-51. [21] E. Kosuke, S. Kenrin, H. Makoto, H. Jun, K. Yoshitaka, K. Shoichi, M. Tokimitsu, K. Kota, Y. Hideki, Oxygen and air nanobubble water solution promote the growth of plants, fishes, and mice, PLoS One 8 (2013) e65339. [22] R. Lencioni, F. Piscaglia, L. Bolondi, Contrast-enhanced ultrasound in the diagnosis of hepatocellular carcinoma, J. Hepatol. 48 (2008) 848-857. [23] U. Nemec, S.F. Nemec, M. Weber, C. Czerny, C.R. Krestan, Quantitative evaluation of contrast-enhanced ultrasound after intravenous administration of a microbubble contrast agent for differentiation of benign and malignant thyroid nodules: assessment of diagnostic accuracy, Eur. Radiol. 22 (2012) 1357-1365. [24] E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, E. Fattal, Polymeric nano/ microcapsules of liquid perfluorocarbons for ultrasonic imaging: Physical characterization, Langmuir 22 (2006) 4397-4402. [25] L.M. Kornmann, K.D. Reesink, R.S. Reneman, A.P. Hoeks, Critical appraisal of targeted ultrasound contrast agents for molecular imaging in large arteries, Ultrasound Med. Biol. 36 (2010) 181-191. [26] R.T. James Seddon, J.W. Harold Zandvliet, D. Lohse, Knudsen gas provides nanobubble stability, Phys. Rev. Lett. 107 (2011) 116101. [27] F.H. Macdougall, The equation of state for gases and liquids, Thermochim. Acta 59 (1982) 167-174. [28] M.S. Plesset, A. Prosperetti, Bubble dynamics and cavitation, Annu. Rev. Fluid Mech. 9 (1977) 145-185. [29] M.P. Brenner, S. Hilgenfeldt, D. Lohse, Single-bubble sonoluminescence, Rev. Mod. Phys. 74 (2002) 425-484. [30] A. Vishnyakov, A.V. Neimark, Phase transitions and criticality in small systems: Vapor-liquid transition in nanoscale spherical cavities, J. Phys. Chem. B 110 (2006) 9403. [31] A.A. Atchley, The Blake threshold of a cavitation nucleus having a radiusdependent surface tension, J. Acoust. Soc. Am. 85 (1989) 152-157. [32] C.A. Ward, A. Balakrishnan, F.C. Hooper, On the thermodynamics of nucleation in weak gas-liquid solutions, J. Fluids Eng. 92 (1970) 695. [33] W. Herbert, Particle entropies and entropy quanta. III. The van der waals gas, Z. Phys. Chem. 216 (2002) 615-639. |