[1] H. Staroszczyk, W. Ciesielski, P. Tomasik, Starch-metal complexes and metal compounds, J. Sci. Food Agric. 98(2018) 2845-2856. [2] R. Liu, W. Sun, Y. Zhang, Z. Huang, H. Hu, M. Zhao, W. Li, Development of a novel model dough based on mechanically activated cassava starch and gluten protein: Application in bread, Food Chem. 300(2019) 125196. [3] Y.L. Sun, Y.W. Li, J.J. An, Z.H. Liu, Q.L. Chen, Antioxidative and inflammatory responses in spleen and head kidney of yellow catfish (Pelteobagrus fulvidraco) induced by waterborne cadmium exposure, Turk. J. Fish. Quat. Sci. 20(2020) 87-96. [4] A. Agi, R. Junin, A. Arsad, A. Abbas, A. Gbadamosi, N.B. Azli, J. Oseh, Ultrasoundassisted weak-acid hydrolysis of crystalline starch nanoparticles for chemical enhanced oil recovery, Int. J. Biol. Macromol. (2019) 1251-1271. [5] J. Atukuri, B.B. Odong, J.H. Muyonga, Multi-response optimization of extrusion conditions of grain amaranth flour by response surface methodology, Food Science & Nutrition 7(2019) 4147-4162. [6] Z. Zhou, B. Zhang, H. Liu, X. Liang, W. Ma, Z. Shi, S. Yang, Zinc effects on cadmium toxicity in two wheat varieties (Triticum aestivum L.) differing in grain cadmium accumulation, Ecotoxicol. Environ. Saf. 183(2019) 109562. [7] Q. Chen, Y. Shi, G. Chen, M. Cai, Enhanced mechanical and hydrophobic properties of composite cassava starch films with stearic acid modified MCC (microcrystalline cellulose)/NCC (nanocellulose) as strength agent, Int. J. Biol. Macromol. 142(2020) 846-854. [8] O. Ayetigbo, S. Latif, A. Abass, J. Müller, Preparation, optimization and characterization of foam from white-flesh and yellow-flesh cassava (Manihot esculenta) for powder production, Food Hydrocoll. 97(2019) 105205. [9] A. Bogusz, P. Oleszczuk, R. Dobrowolski, Application of laboratory prepared and commercially available biochars to adsorption of cadmium, copper and zinc ions from water, Bioresour. Technol. 196(2015) 540-549. [10] J. Calle, Y. Benavent-Gil, C.M. Rosell, Development of gluten free breads from Colocasia esculenta flour blended with hydrocolloids and enzymes, Food Hydrocoll. 98(2020) 105243. [11] A. Zhang, X. Yin, X. Shen, Y. Liu, Removal of fluticasone propionate and clobetasol propionate by calcium peroxide: Synergistic effects of oxidation, adsorption, and base catalysis, ES Energy & Environment 1(2018) 89-98. [12] R.D. Batista, D. de Cássia Sousa Mendes, C.C. Morais, D.V. Thomaz, D.P. Ramirez Ascheri, C. Damiani, E.R. Asquieri, Physicochemical, functional and rheological properties of fermented and non-fermented starch from canary seed (Phalaris canariensis), Food Hydrocoll. 99(2020) 105346. [13] S. Bhadra, N. Mohan, S. Nair, Suitability of different biomaterials for the application in tire, SN Applied Sciences 1(2019) 1554. [14] H. Gu, X. Xu, H. Zhang, C. Liang, H. Lou, C. Ma, Y. Li, Z. Guo, J. Gu, Chitosan-coatedmagnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption, Eng. Sci. 1(2018) 46-54. [15] H.C. Dang, X. Yuan, Q. Xiao, W.X. Xiao, Y.K. Luo, X.L. Wang, F. Song, Y.Z. Wang, Facile batch synthesis of porous vaterite microspheres for high efficient and fast removal of toxic heavy metal ions, J. Environ. Chem. Eng. 5(2017) 4505-4515. [16] J. Huang, Y. Li, Y. Cao, F. Peng, Y. Cao, Q. Shao, H. Liu, Z. Guo, Hexavalent chromium removal over magnetic carbon nanoadsorbents: synergistic effect of fluorine and nitrogen co-doping, J. Mater. Chem. A 6(2018) 13062-13074. [17] K. Chen, J.Y. He, Y.L. Li, X.G. Cai, K.S. Zhang, T. Liu, Y. Hu, D.Y. Lin, L.T. Kong, J.H. Liu, Removal of cadmium and lead ions from water by sulfonated magnetic nanoparticle adsorbents, J. Colloid Interface Sci. 494(2017) 307-316. [18] A.B. Abass, W. Awoyale, E.O. Alamu, Assessment of the chemical and trace metal composition of dried cassava products from Nigeria, Qual. Assur. Saf. Crop. Foods 11(2019) 43-52. [19] K.O. Falade, B. Ibanga-Bamijoko, O.E. Ayetigbo, Comparing properties of starch and flour of yellow-flesh cassava cultivars and effects of modifications on properties of their starch, J. Food Meas. Charact. 13(2019) 2581-2593. [20] X.L. Xie, J. Huang, Y.Q. Zhang, Z.F. Tong, A.P. Liao, X.K. Guo, Z.Z. Qin, Z.H. Guo, Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater, Korean J. Chem. Eng. 36(2019) 226-235. [21] H. Hu, W. Liu, J. Shi, Z. Huang, Y. Zhang, A. Huang, M. Yang, X. Qin, F. Shen, Structure and functional properties of octenyl succinic anhydride modified starch prepared by a non-conventional technology, Starch-Stärke 68(2016) 151-159. [22] Y. Zheng, Z.Q. Fu, D. Li, M. Wu, Effects of ball milling processes on the microstructure and rheological properties of microcrystalline cellulose as a sustainable polymer additive, Materials 11(2018) 13. [23] A. Gilet, C. Quettier, V. Wiatz, H. Bricout, M. Ferreira, C. Rousseau, E. Monflier, S. Tilloy, Unconventional media and technologies for starch etherification and esterification, Green Chem. 20(2018) 1152-1168. [24] Y.A.N. Sha, M.A.N. Rui-lin, P. Tian-lan, Q. Liang-jie, Determination of Cd(II) in water samples by spectropotometry with summation of positive-negative peaks and 1-(4-nitrophenyl)-3-(4-phenylazophenyl) triazene, Chin. J. Anal. Lab. 28(2009) 68-70. [25] L. Gao, S. Chen, F. Chen, Spectrophotometric determination of cd (II)in environmental water samples with cadion in the presence of triton X-114 surface active agent, Rock Miner. Anal. 32(2013) 114-118. [26] A. Abdolali, H.H. Ngo, W.S. Guo, J.L. Zhou, J. Zhang, S. Liang, S.W. Chang, D.D. Nguyen, Y. Liu, Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous fixed-bed column, Bioresour. Technol. 229(2017) 78-87. [27] Y.L. Xu, B.L. Chen, Organic carbon and inorganic silicon speciation in rice-branderived biochars affect its capacity to adsorb cadmium in solution, J. Soils Sediments 15(2015) 60-70. [28] R.B. Qiang, Z.G. Hu, Y.Y. Yang, Z.M. Li, N. An, X.Y. Ren, H.X. Hu, H.Y. Wu, Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors, Electrochim. Acta 167(2015) 303-310. [29] L.O. Ekebafe, D.E. Ogbeifun, F.E. Okieimen, Equilibrium, kinetic and thermodynamic studies of lead (II) sorption on hydrolyzed starch graft copolymers, J. Polym. Environ. 26(2018) 807-818. [30] H. Li, J. Gong, S. Zhang, J. Zhang, Y. Hu, Synthesis and adsorpting property of magnetic imprinted crosslinked acrylic acid/acrylamide grafted-esterified cyanoethyl cassava starch microspheres, Chem. Ind. Eng. Prog. 38(2019) 1930-1940. [31] F. Ogata, N. Nagai, E. Ueta, T. Nakamura, N. Kawasaki, Biomass potential of virgin and calcined tapioca (cassava starch) for the removal of Sr(II) and Cs(I) from aqueous solutions, Chem. Pharm. Bull. 66(2018) 295-302. [32] R. Liu, W.D. Sun, Y.J. Zhang, Z.Q. Huang, H.Y. Hu, M.Y. Zhao, Preparation of starch dough using damaged cassava starch induced by mechanical activation to develop staple foods: Application in crackers, Food Chem. 271(2019) 284-290. [33] S.M. Chisenga, T.S. Workneh, G. Bultosa, M. Laing, Characterization of physicochemical properties of starches from improved cassava varieties grown in Zambia, Aims Agric. Food 4(2019) 939-966. [34] Z.J. Wang, H. Zhu, J.N. Huang, Z. Ge, J. Guo, X.Y. Feng, Q. Xu, Improvement of the bonding properties of cassava starch-based wood adhesives by using different types of acrylic ester, Int. J. Biol. Macromol. 126(2019) 603-611. [35] B. Schmidt, Effect of crosslinking agent on potato starch grafted acrylamide copolymers and their sorption properties for water, Fe3+ and Cu2+ cations, Polimery 63(2018) 347-352. [36] M.B.M. Ghazy, F.A. El-Hai, M.F. Mohamed, H.A. Essawy, Potassium fulvate as cointerpenetrating agent during graft polymerization of acrylic acid from cellulose, Int. J. Biol. Macromol. 91(2016) 1206-1214. [37] X.L. Liu, Y.F. Gao, H.J. Luo, R.H. Jin, Synergistically constructed polyamine/nanosilica/ graphene composites: Preparation, features and removal of Hg2+ and dyes from contaminated water, RSC Adv. 4(2014) 9594-9601. [38] X.H. Li, S.D. Deng, T. Lin, X.G. Xie, Cassava starch graft copolymer as a novel inhibitor for the corrosion of aluminium in HNO3 solution, J. Mol. Liq. 282(2019) 499-514. [39] K. Hemvichian, P. Suwanmala, W. Kangsumrith, P. Sudcha, K. Inchoto, T. Pongprayoon, O. Güven, Enhancing compatibility between poly(lactic acid) and thermoplastic starch using admicellar polymerization, J. Appl. Polym. Sci. 133(2016) 43755. [40] Z.G. Luo, W.W. Cheng, H.M. Chen, X. Fu, X.C. Peng, F.X. Luo, L.H. Nie, Preparation and properties of enzyme-modified cassava starch-zinc complexes, J. Agric. Food Chem. 61(2013) 4631-4638. [41] M.R. Robinson, M. Abdelmoula, M. Mallet, R. Coustel, Starch functionalized magnetite nanoparticles: New insight into the structural and magnetic properties, J. Solid State Chem. 277(2019) 587-593. [42] R. Chang, Y. Tian, Z. Yu, C. Sun, Z. Jin, Preparation and characterization of zwitterionic functionalized starch nanoparticles, Int. J. Biol. Macromol. 142(2020) 395-403. [43] N. Tudorachi, A.P. Chiriac, L.E. Nita, F. Mustata, A. Diaconu, V. Balan, A. Rusu, G. Lisa, Studies on the nanocomposites based on carboxymethyl starch-g-lactic acid-coglycolic acid copolymer and magnetite, J. Therm. Anal. Calorim. 131(2018) 1867-1880. [44] J. Sun, X. Guan, Z. Kou, P. Lan, L. Lan, A. Liao, Highly efficient preparation of starch nanoparticles and their adsorption capacity, Food and Fermentation Industries 45(2019) 108-116. [45] W. Bai, L. Fan, Y. Zhou, Y. Zhang, J. Shi, G. Lv, Y. Wu, Q. Liu, J. Song, Removal of Cd2+ ions from aqueous solution using cassava starch-based superabsorbent polymers, J. Appl. Polym. Sci. 134(2017) 44758. [46] P.U. Shah, N.P. Raval, M. Vekariya, P.M. Wadhwani, N.K. Shah, Adsorption of lead (II) ions onto novel cassava starch 5-choloromethyl-8-hydroxyquinoline polymer from an aqueous medium, Water Sci. Technol. 74(2016) 943-956. [47] H. Li, Y.M. Liu, X. Gao, X.G. Li, Preparation and characterization of cassava starchbased adsorbents for separating of azeotropic ethanol-water in biofuels ethanol production, J. Chem. Technol. Biotechnol. 91(2016) 977-984. [48] K. Mulani, V. Patil, N. Chavan, K. Donde, Adsorptive removal of chromium(VI) using spherical resorcinol-formaldehyde beads prepared by inverse suspension polymerization, J. Polym. Res. 26(2019) 41. [49] W.J. Lai, S.C. Lin, Hydroxyethyl cellulose-grafted loofa sponge-based metal affinity adsorbents for protein purification and enzyme immobilization, Process Biochem. 74(2018) 141-147. [50] Q.-J. Chen, X.-M. Zheng, L.-L. Zhou, Y.-F. Zhang, Adsorption of Cu(II) and methylene blue by succinylated starch nanocrystals, Starch-Stärke 71(2019) 1800266. [51] J. Guo, J. Wang, G. Zheng, X. Jiang, Optimization of the removal of reactive golden yellow SNE dye by cross-linked cationic starch and its adsorption properties, J. Eng. Fibers Fabr. 14(2019) 1-13. [52] P.U. Shah, N.P. Raval, N.K. Shah, Cadmium(II) removal from an aqueous solution using CSCMQ grafted copolymer, Desalin. Water Treat. 57(2016) 28262-28273. [53] M.E. Mahmoud, G.M. Nabil, M.M. Zaki, M.M. Saleh, Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water, Int. J. Biol. Macromol. 137(2019) 455-468. [54] Q. Yuan, Y. Chi, N. Yu, Y. Zhao, W. Yan, X. Li, B. Dong, Amino-functionalized magnetic mesoporous microspheres with good adsorption properties, Mater. Res. Bull. 49(2014) 279-284. |