[1] D. Stoecklein, D. Di Carlo, Nonlinear microfluidics, Analyt. Chem. 91(2019) 296-314. [2] H.Y. Chen, Y. Liu, H.T. Zhang, L. Yu, Y.L. Zhu, D. Li, Separation and manipulation of rare-earth oxide particles by dielectrophoresis, Chinese J. Chem. Eng. 18(2010) 1034-1037. [3] Z.S. Yu, X.M. Shao, R. Tanner, Dynamic simulation of shear-induced particle migration in a two-dimensional circular Couette device, Chinese J. Chem. Eng. 15(2007) 333-338. [4] G. Segré, A. Silberberg, Radial poiseuille flow of suspensions, Nature 189(1961) 209-210. [5] S.C. Hur, H.T. Tse, D. Di Carlo, Sheathless inertial cell ordering for extreme throughput flow cytometry, Lab on A Chip 10(2010) 274-280. [6] Y.F. Gao, P. Magaud, C. Lafforgue, S. Colin, L. Baldas, Inertial lateral migration and self-assembly of particles in bidisperse suspensions in microchannel flows, Microfluidics Nanofluidics 23(2019) 93-107. [7] S. Kahkeshani, H. Haddadi, D. Di Carlo, Preferred interparticle spacings in trains of particles in inertial microchannel flows, J. Fluid Mech. 786(2016) R3. [8] C. Dietsche, B.R. Mutlu, J.F. Edd, P. Koumoutsakos, M. Toner, Dynamic particle ordering in oscillatory inertial microfluidics, Microfluidics Nanofluidics 23(2019) 83. [9] Y.F. Gao, P. Magaud, L. Baldas, C. Lafforgue, M. Abbas, Self-ordered particle trains in inertial microchannel flows, Microfluidics Nanofluidics 21(2017) 154. [10] Z. Pan, R. Zhang, C. Yuan, H.Y. Wu, Direct measurement of microscale flow structures induced by inertial focusing of single particle and particle trains in a confined microchannel, Phys. Fluids 30(2018) 081703. [11] X. Hu, J.Z. Lin, X.K. Ku, Inertial migration of circular particles in Poiseuille flow of a power-law fluid, Phys. Fluids 31(2019) 073306. [12] X. Hu, J.Z. Lin, D.M. Chen, X.K. Ku, Stability condition of self-organizing staggered particle trains in channel flow, Microfluidics Nanofluidics 24(2020) 25. [13] A. Gupta, P. Magaud, C. Lafforgue, M. Abbas, Conditional stability of particle alignment in finite-Reynolds-number channel flow, Phys. Rev. Fluids 3(2018) 114302. [14] J.P. Matas, J.F. Morris, E. Guazzelli, Inertial migration of rigid spherical particles in Poiseuille flow, J. Fluid Mech. 515(2004) 171-195. [15] X. Li, P. Zhang, J.L. Li, W.W. Wang, G.H. Chen, Analysis of deformation and internal flow patterns for rising single bubbles in different liquids, Chinese J. Chem. Eng. 27(2019) 745-758. [16] F. Del Giudice, S. Sathish, G. D'Avino, A.Q. Shen, From the edge to the center:viscoelastic migration of particles and cells in a strongly shear-thinning liquid flowing in a microchannel, Analyt. Chem. 89(2017) 13146-13159. [17] N. Xiang, Z.H. Ni, H. Yi, Concentration-controlled particle focusing in spiral elasto-inertial microfluidic devices, Electrophoresis 39(2018) 417-424. [18] F. Del Giudice, G. D'Avino, F. Greco, P.L. Maffettone, A.Q. Shen, Fluid viscoelasticity drives self-assembly of particle trains in a straight microfluidic channel, Phys. Rev. Appl. 10(2018) 064058. [19] D. Li, X. Xuan, Fluid rheological effects on particle migration in a straight rectangular microchannel, Microfluidics Nanofluidics 22(2018) 49. [20] G. D'Avino, M.A. Hulsen, P.L. Maffettone, Dynamics of pairs and triplets of particles in a viscoelastic fluid flowing in a cylindrical channel, Comput. Fluids 86(2013) 45-55. [21] G. D'Avino, P.L. Maffettone, Numerical simulations on the dynamics of trains of particles in a viscoelastic fluid flowing in a microchannel, Meccanica 55(2020) 317-330. [22] D.M. Nie, J.Z. Lin, Behavior of three circular particles in a confined power-law fluid under shear, J. Non-Newtonian Fluid Mech. 221(2015) 76-94. [23] M. Firouznia, B. Metzger, G. Ovarlez, S. Hormozi, The interaction of two spherical particles in simple-shear flows of yield stress fluids, J. Non-Newtonian Fluid Mech. 255(2018) 19-38. [24] Y.H. Qian, D. D'Humières, P. Lallemand, Lattice BGK models for Navier-Stokes equation, Europhys. Lett. 17(1992) 479-484. [25] S.Y. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech. 30(1998) 329-364. [26] Z.L. Guo, C.G. Zheng, B.C. Shi, Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E 65(2002) 046308. [27] A.J.C. Ladd, Numerical simulations of particulate suspensions via a discretized Boltzmann-equation. Part 1. Theoretical foundation, J. Fluid Mech. 271(1994) 285-309. [28] C.K. Aidun, Y. Lu, E. Ding, Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation, J. Fluid Mech. 373(2000) 287-311. [29] R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies:Application to particulate flow, J. Comput. Phys. 169(2001) 363-426. [30] B.H. Wen, H.B. Li, C.Y. Zhang, H.P. Fang, Lattice-type-dependent momentumexchange method for moving boundaries, Phys. Rev. E 85(2012) 016704. [31] K. Hood, M. Roper, Pairwise interactions in inertially driven one-dimensional microfluidic crystals, Phys. Rev. Fluids 3(2018) 094201. |