[1] R.A. Kerr, R.F. Service, What can replace cheap oil:And when, Sci. 309(2005) 101-101. [2] Z.X. Xu, J.H. Ceng, H. Song, Q. Wang, Z.X. He, B. Li, P.G. Duan, X. Hu, Production of bio-fuel from plant oil asphalt via pyrolysis, J. Energy Insti. 93(2020) 1763-1772. [3] X. Han, Y. Guo, X. Liu, Q. Xia, Y. Wang, Catalytic conversion of lignocellulosic biomass into hydrocarbons:A mini review, Catal. Today 319(2019) 2-13. [4] M.J. Climent, A. Corma, S. Iborra, Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels, Green Chem. 16(2014) 516-547. [5] A.A. Rosatella, S.P. Simeonov, R.F.M. Frade, C.A.M. Afonso, 5-Hydroxymethylfurfural (HMF) as a building block platform:Biological properties, synthesis and synthetic applications, Green Chem. 13(2011) 754-793. [6] P. Ibarra-Gonzalez, B.G. Rong, A review of the current state of biofuels production from lignocellulosic biomass using thermochemical conversion routes, Chinese J. Chem. Eng. 27(2019) 1523-1535. [7] T.D. Matson, K. Barta, A.V. Iretskii, P.C. Ford, J. Am, One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels, J. Am. Chem. Soc. 133(2011) 14090-14097. [8] R.W. Jenkins, C.M. Moore, T.A. Semelsberger, C.J. Chuck, J.C. Gordon, A.D. Sutton, The effect of functional groups in bio-derived fuel candidates, ChemSusChem 9(2016) 922-931. [9] M. Hronec, K. Fulajtárova, T. Liptaj, M. Štolcová, N. Prónayová, T. Soták, Cyclopentanone:A raw material for production of C15 and C17 fuel precursors, Biomass bioenerg. 63(2014) 291-299. [10] J. Li, B. Wang, Y. Dou, Y. Yang, Mechanistic insight into the self-coupling of 5-hydroxymethyl furfural to C12 fuel intermediate catalyzed by ionic liquids, RSC Adv. 9(2019) 10825-10831. [11] H. Zang, E.Y.X. Chen, Organocatalytic upgrading of furfural and 5-hydroxymethyl furfural to C10 and C12 furoins with quantitative yield and atom-efficiency, Int. J. Mol. Sci. 16(2015) 7143-7158. [12] Y.B. Huang, Z. Yang, J.J. Dai, Q.X. Guo, Y. Fu, Production of high quality fuels from lignocellulose-derived chemicals:A convenient C-C bond formation of furfural, 5-methylfurfural and aromatic aldehyde, RSC Adv. 2(2012) 11211-11214. [13] G. Li, N. Li, Z. Wang, C. Li, A. Wang, X. Wang, Y. Cong, T. Zhang, Synthesis of high-quality diesel with furfural and 2-methylfuran from hemicellulose, ChemSusChem 5(2012) 1958-1966. [14] S. Dutta, A. Bohre, W. Zheng, G.R. Jenness, M. Núñez, B. Saha, D.G. Vlachos, Solventless C-C coupling of low carbon furanics to high carbon fuel precursors using an improved graphene oxide carbocatalyst, ACS Catal. 7(2017) 3905-3915. [15] H. Li, S. Saravanamurugan, S. Yang, A. Riisager, Direct transformation of carbohydrates to the biofuel 5-ethoxymethylfurfural by solid acid catalysts, Green Chem. 18(2016) 726-734. [16] P.K. Saikia, P.P. Sarmah, B.J. Borah, L. Saikia, K. Saikia, D.K. Dutta, Stabilized Fe3O4 magnetic nanoparticles into nanopores of modified montmorillonite clay:A highly efficient catalyst for the Baeyer-Villiger oxidation under solvent free conditions, Green Chem. 18(2016) 2843-2850. [17] P.P. Sarmah, D.K. Dutta, Chemoselective reduction of a nitro group through transfer hydrogenation catalyzed by Ru0-nanoparticles stabilized on modified montmorillonite clay, ChemInform 43(2012) 1086-1093. [18] Z. Wang, H. Li, W. Zhao, S. Yang, Low-temperature and solvent-free production of biomass-derived diesel-range C17 precursor via one-pot cascade acylation-alkylation over Sn4+-montmorillonite, J. Ind. Eng. Chem. 66(2018) 325-332. [19] L. Wang, X. Li, D.C.W. Tsang, F. Jin, D. Hou, Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite:Immobilization performance under accelerated ageing conditions, J. Hazard. Mater. 387(2020) 122005. [20] V.V. Bokade, G.D. Yadav, Heteropolyacid supported on montmorillonite catalyst for dehydration of dilute bio-ethanol, Appl. Clay Sci. 53(2011) 263-271. [21] A.K. Shah, S. Park, H.A. Khan, U.H. Bhatti, P. Kumar, A.W. Bhutto, Y.H. Park, Citronellal cyclisation over heteropoly acid supported on modified montmorillonite catalyst:Effects of acidity and pore structure on catalytic activity, Res. Chem. Intermediat. 44(2018) 2405-2423. [22] L.M. Wu, D.S. Tong, L.Z. Zhao, W.H. Yu, C.H. Zhou, H. Wang, Fourier transform infrared spectroscopy analysis for hydrothermal transformation of microcrystalline cellulose on montmorillonite, Appl. Clay Sci. 95(2014) 74-82. [23] S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee, M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution:Kinetics and mechanism, Chem. Eng. J. 243(2014) 14-23. [24] A. Azzouz, D. Nistor, D. Miron, A.V. Ursu, T. Sajin, F. Monette, P. Niquette, R. Hausler, Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements, Thermochim. Acta 449(2006) 27-34. [25] H. Zhang, W. Yang, I. Roslan, S. Jaenicke, G.K. Chuah, A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to c-valerolactone, J. Catal. 375(2019) 56-67. [26] M.H. Zahedi-Niaki, S.M.J. Zaidi, S. Kaliaguine, Acid properties of titanium aluminophosphate molecular sieves, Micropor. Mesopor. Mat. 32(1999) 251-255. [27] T. Okuhara, T. Hashimoto, T. Hibi, M. Misono, Catalysis by heteropoly compounds. IX:Role of water in catalytic dehydration of 2-propanol over copper salts of H3PW12O40, J. Catal. 93(1985) 224-230. [28] L. Zatta, L. Pereira Ramos, F. Wypych, Acid activated montmorillonite as catalysts in methyl esterification reactions of lauric acid, J. Oleo Sci. 61(2012) 497-504. [29] H. Li, S. Saravanamurugan, S. Yang, A. Riisager, Catalytic alkylation of 2-methylfuran with formalin using supported acidic ionic liquids, ACS Sustain. Chem. Eng. 3(2015) 3274-3280. |