[1] Earth System Research Laboratory (ESRL), National Oceanic and Atmospheric Administration (NOAA). Trends in atmospheric carbon dioxide, ESRL, NOAA:Boulder, 2020(accessed August 26,2020) http://www.esrl.noaa.gov/gmd/ccgg/trends/. [2] R.H. Socolow, Can we bury global warming? Sci. Am. 293(2005) 49-55. [3] H. Herzog, E. Drake, E. Adams, CO2 Capture,Reuse, and Storage Technologies for Mitigating Global Climate, Change, A White Paper, Final Report. Energy, Laboratory, Massachusetts Institute of Technology, Cambridge, USA, 1997. [4] S.M. Benson, T. Surles, Carbon dioxide capture and storage:An overview with emphasis on capture and storage in deep geological formations, Proc. IEEE 94(10) (2006) 1795-1805. [5] K.T. John Davison, Technologies for capture of carbon dioxide, Proc. of the 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 2004. [6] R. Steeneveldt, B. Berger, T.A. Torp, CO2 capture and storage:Closing the knowing-doing gap, Chem. Eng. Res. Des. 84(9) (2006) 739-763. [7] Z. Zhang, J.C. Cai, F. Chen, H. Li, W.X. Zhang, W.J. Qi, Progress in enhancement of CO2 absorption by nanofluids:A mini review of mechanisms and current status, Renew. Energy 118(2018) 527-535. [8] R.J. Notz, I. Tönnies, N. McCann, G. Scheffknecht, H. Hasse, CO2 capture for fossil fuel-fired power plants, Chem. Eng. Technol. 34(2) (2011) 163-172. [9] British Petroleum. BP statistical review of world energy, 2020. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energyeconomics/statistical-review/bp-stats-review-2020-full-report.pdf. [10] R. Pérez-Vega, A. Abad, P. Gayán, F. García-Labiano, M.T. Izquierdo, F. Luis, J. Adánez, Coal combustion via Chemical Looping assisted by Oxygen Uncoupling with a manganese-iron mixed oxide doped with titanium, Fuel Process. Technol. 197(2020) 106184. [11] C.-L. Chou, Sulfur in coals:A review of geochemistry and origins, Int. J. Coal Geol. 100(2012) 1-13. [12] G. Gryglewicz, S. Jasień ko, The behaviour of sulphur forms during pyrolysis of low-rank coal, Fuel 71(11) (1992) 1225-1229. [13] J.V. Ibarra, A.J. Bonet, R. Moliner, Release of volatile sulfur compounds during low temperature pyrolysis of coal, Fuel 73(6) (1994) 933-939. [14] D. Zhang, S. Yani, Sulphur transformation during pyrolysis of an Australian lignite, Proc. Combust. Inst. 33(2) (2011) 1747-1753. [15] X. Tian, K. Wang, H.B. Zhao, M.Z. Su, Chemical looping with oxygen uncoupling of high-sulfur coal using copper ore as oxygen carrier, Proc. Combust. Inst. 36(3) (2017) 3381-3388. [16] I. Adánez-Rubio, A. Abad, P. Gayán, F. García-Labiano, F. Luis, J. Adánez, The fate of sulphur in the Cu-based chemical looping with oxygen uncoupling (CLOU) process, Appl. Energy 113(2014) 1855-1862. [17] R. Pérez-Vega, I. Adánez-Rubio, P. Gayán, M.T. Izquierdo, A. Abad, F. GarcíaLabiano, L.F. de Diego, J. Adánez, Sulphur, nitrogen and mercury emissions from coal combustion with CO2 capture in chemical looping with oxygen uncoupling (CLOU), Int. J. Greenh. Gas Control 46(2016) 28-38. [18] B.W. Wang, G. Xiao, X.Y. Song, H.B. Zhao, C.G. Zheng, Chemical looping combustion of high-sulfur coal with NiFe2O4-combined oxygen carrier, J. Therm. Anal. Calorim. 118(2014) 1593-1602. [19] N. Berguerand, A. Lyngfelt, Chemical-looping combustion of petroleum coke using ilmenite in a 10 kW (th) unit-high-temperature operation, Energy Fuels 23(10) (2009) 5257-5268. [20] T. Mendiara, M.T. Izquierdo, A. Abad, L.F. de Diego, F. García-Labiano, P. Gayán, J. Adánez, Release of pollutant components in CLC of lignite, Int. J. Greenh. Gas Control 22(2014) 15-24. [21] C. Chung, Y. Pottimurthy, M.Y. Xu, T.-L. Hsieh, D.K. Xu, Y. Zhang, Y. Chen, P. He, M. Pickarts, L. Fan, A. Tong, Fate of sulfur in coal-direct chemical looping systems, Appl. Energy 208(2017) 678-690. [22] C. Linderholm, P. Knutsson, M. Schmitz, P. Markström, A. Lyngfelt, Material balances of carbon, sulfur, nitrogen and ilmenite in a 100 kW CLC reactor system, Int. J. Greenhouse Gas Control 27(2014) 188-202. [23] C. Linderholm, M. Schmitz, Chemical-looping combustion of solid fuels in a 100 kW dual circulating fluidized bed system using iron ore as oxygen carrier, J. Environ. Chem. Eng. 4(1) (2016) 1029-1039. [24] J. Adánez, A. Abad, F. García-Labiano, P. Gayán, L.F. de Diego, Progress in chemical-looping combustion and reforming technologies, Prog. Energy Combust. Sci. 38(2012) 215-282. [25] T. Mendiara, A. Pérez-Astray, M. Izquierdo, A. Abad, L.F. de Diego, F. GarcíaLabiano, P. Gayán, J. Adánez, Chemical looping combustion of different types of biomass in a 0.5 kWth unit, Fuel 211(2018) 868-875. [26] P. Ohlemüller, J. Ströhle, B. Epple, Chemical looping combustion of hard coal and torrefied biomass in a 1 MWth pilot plant, Int. J. Greenh. Gas Control 65(2017) 149-159. [27] L.F. de Diego, F. García-Labiano, P. Gayán, J. Celaya, J.M. Palacios, J. Adánez, Operation of a 10kWth chemical-looping combustor during 200 h with a CuO-Al2O3 oxygen carrier, Fuel 86(7-8) (2007) 1036-1045. [28] R.C. Brown, Q. Liu, G. Norton, Catalytic effects observed during the cogasification of coal and switchgrass, Biomass Bioenergy 18(6) (2000) 499-506. [29] M. Luo, S.Z. Wang, L.F. Wang, M.M. Lv, L.L. Qian, H. Fu, Experimental investigation of co-combustion of coal and biomass using chemical looping technology, Fuel Process. Technol. 110(2013) 258-267. [30] B.M. Corbella, L. De Diego, F. García, J. Adánez, J.M. Palacios, The performance in a fixed bed reactor of copper-based oxides on titania as oxygen carriers for chemical looping combustion of methane, Energy Fuels 19(2) (2005) 433-441. [31] C. Wang, M. Luo, L.Z. Zhou, H.Y. Zhang, Sulfur transformation behavior of inorganic sulfur-containing compounds in chemical-looping combustion, Energy Fuels 34(3) (2020) 3969-3975. [32] B.W. Wang, R. Yan, D.H. Lee, D.T. Liang, Y. Zheng, H.B. Zhao, C.G. Zheng, Thermodynamic investigation of carbon deposition and sulfur evolution in chemical looping combustion with syngas, Energy Fuels 22(2) (2008) 1012-1020. [33] K. Wang, X. Tian, H.B. Zhao, Sulfur behavior in chemical-looping combustion using a copper ore oxygen carrier, Appl. Energy 166(2016) 84-95. [34] C. Forero, P. Gayán, F. García-Labiano, L.F. De Diego, A. Abad, J. Adánez, Effect of gas composition in chemical-looping combustion with copper-based oxygen carriers:Fate of sulphur, Int. J. Greenh. Gas Control 4(5) (2010) 762-770. [35] E. Jerndal, T. Mattisson, A. Lyngfelt, Thermal analysis of chemical-looping combustion, Chem. Eng. Res. Des. 84(9) (2006) 795-806. [36] S. Yani, D.-K. Zhang, Transformation of organic and inorganic sulphur in a lignite during pyrolysis:Influence of inherent and added inorganic matter, Procee. Combust. Inst. 32(2) (2009) 2083-2089. [37] S. Yani, D. Zhang, An experimental study into pyrite transformation during pyrolysis of Australian lignite samples, Fuel 89(7) (2010) 1700-1708. [38] S. Yani, D. Zhang, An experimental study of sulphate transformation during pyrolysis of an Australian lignite, Fuel Process. Technol. 91(3) (2010) 313-321. [39] J.H. Levy, T.J. White, The reaction of pyrite with water vapour, Fuel 67(10) (1988) 1336-1339. [40] S. Yasyerli, G. Dogu, I. Ar, T. Dogu, Activities of copper oxide and Cu-V and CuMo mixed oxides for H2S removal in the presence and absence of hydrogen and predictions of a deactivation model, Ind. Eng. Chem. Res. 40(23) (2001) 5206-5214. [41] H.K. Chen, B.Q. Li, B.J. Zhang, Effects of mineral matter on products and sulfur distributions in hydropyrolysis, Fuel 78(6) (1999) 713-719. [42] X.J. Chu, W. Li, B.Q. Li, H.K. Chen, Sulfur transfers from pyrolysis and gasification of direct liquefaction residue of Shenhua coal, Fuel 87(2) (2008) 211-215. [43] R.D. Solunke, G. Veser, Integrating desulfurization with CO2-capture in chemical-looping combustion, Fuel 90(2011) 608-617. |