[1] U.-H. Kim, G.-T. Park, B.-K. Son, G.W. Nam, J. Liu, L.-Y. Kuo, P. Kaghazchi, C.S. Yoon, Y.-K. Sun, Heuristic solution for achieving long-term cycle stability for Ni-rich layered cathodes at full depth of discharge, Nat. Energy 5(11) (2020) 860-869. [2] C.A. Heck, M.-W. von Horstig, F. Huttner, J.K. Mayer, W. Haselrieder, A. Kwade, Review-Knowledge-based process design for high quality production of NCM811 cathodes, J. Electrochem. Soc. 167(16) (2020) 160521. [3] S. Jamil, G. Wang, L.i. Yang, X. Xie, S. Cao, H. Liu, B. Chang, X. Wang, Suppressing H2-H3 phase transition in high Ni-low Co layered oxide cathode material by dual modification, J. Mater. Chem. A 8(40) (2020) 21306-21316. [4] W. Li, E.M. Erickson, A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries, Nat. Energy 5(1) (2020) 26-34. [5] G.T. Park, H.H. Ryu, N.Y. Park, C.S. Yoon, Y.K. Sun, Tungsten doping for stabilization of Li[Ni0.90Co0.05Mn0.05]O2 cathode for Li-ion battery at high voltage, J. Power Sources 442(2019) 227242. [6] X. Zhang, Z. Ju, Y. Zhu, K.J. Takeuchi, E.S. Takeuchi, A.C. Marschilok, G. Yu, Multiscale understanding and architecture design of high energy/power lithium-ion battery electrodes, Adv. Energy Mater. 11(2) (2021) 2000808. [7] Y.a. You, H. Celio, J. Li, A. Dolocan, A. Manthiram, Modified high-nickel cathodes with stable surface chemistry against ambient air for lithium-ion batteries, Angew. Chem. 130(22) (2018) 6590-6595. [8] J.Y. Li, C.H. Chang, A. Manthiram, Toward long-life, ultrahigh-nickel layered oxide cathodes for lithium-ion batteries:Optimizing the interphase chemistry with a dual-functional polymer, Chem. Mater. 32(2) (2020) 759-768. [9] N. Zhang, N. Zaker, H. Li, A. Liu, J. Inglis, L. Jing, J. Li, Y. Li, G.A. Botton, J.R. Dahn, Cobalt-free nickel-rich positive electrode materials with a core-shell structure, Chem. Mater. 31(24) (2019) 10150-10160. [10] J.U. Choi, N. Voronina, Y.K. Sun, S.T. Myung, Recent progress and perspective of advanced high-energy Co-less Ni-rich cathodes for Li-ion batteries:Yesterday, today, and tomorrow, Adv. Energy Mater. 10(42) (2020) 2002027. [11] Z. Yang, L. Mu, D. Hou, M.M. Rahman, Z. Xu, J. Liu, D. Nordlund, C.-J. Sun, X. Xiao, F. Lin, Probing dopant redistribution, phase propagation, and local chemical changes in the synthesis of layered oxide battery cathodes, Adv. Energy Mater. 11(1) (2021) 2002719. [12] H. Liu, M. Wolf, K. Karki, Y.-S. Yu, E.A. Stach, J. Cabana, K.W. Chapman, P.J. Chupas, Intergranular cracking as a major cause of long-term capacity fading of layered cathodes, Nano Lett. 17(6) (2017) 3452-3457. [13] K. Zhou, Q. Xie, B. Li, A. Manthiram, An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries, Energy Storage Mater. 34(2021) 229-240. [14] C. Xu, K. Märker, J. Lee, A. Mahadevegowda, P.J. Reeves, S.J. Day, M.F. Groh, S.P. Emge, C. Ducati, B. Layla Mehdi, C.C. Tang, C.P. Grey, Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries, Nat. Mater. 20(1) (2021) 84-92. [15] Y. Zhang, H. Li, J. Liu, J. Zhang, F. Cheng, J. Chen, LiNi0.90Co0.07Mg0.03O2 cathode materials with Mg concentration gradient for rechargeable lithium-ion batteries, J. Mater. Chem. A 7(36) (2019) 20958-20964. [16] Q. Xie, W. Li, A. Dolocan, A. Manthiram, Insights into boron-based polyaniontuned high-nickel cathodes for high-energy-density lithium-ion batteries, Chem. Mater. 31(21) (2019) 8886-8897. [17] D. Kong, J. Hu, Z. Chen, K. Song, C. Li, M. Weng, M. Li, R. Wang, T. Liu, J. Liu, M. Zhang, Y. Xiao, F. Pan, Ti-gradient doping to stabilize layered surface structure for high performance high-Ni oxide cathode of Li-ion battery, Adv. Energy Mater. 9(41) (2019) 1901756. [18] Q. Ran, H. Zhao, Y. Hu, S. Hao, Q. Shen, J. Liu, H. Li, Y.u. Xiao, L. Li, L. Wang, X. Liu, Multifunctional integration of double-shell hybrid nanostructure for alleviating surface degradation of LiNi0.8Co0.1Mn0.1O2 cathode for advanced lithium-ion batteries at high cutoff voltage, ACS Appl. Mater. Interfaces 12(8) (2020) 9268-9276. [19] W.D. Li, X.M. Liu, H. Celio, P. Smith, A. Dolocan, M.F. Chi, A. Manthiram, Mn versus Al in layered oxide cathodes in lithium-ion batteries:A comprehensive evaluation on long-term cyclability, Adv. Energy Mater. 8(15) (2018) 1703154. [20] Q. Xie, W. Li, A. Manthiram, A Mg-doped high-nickel layered oxide cathode enabling safer, high-energy-density Li-ion batteries, Chem. Mater. 31(3) (2019) 938-946. [21] H.W. Zhu, H.F. Yu, H.B. Jiang, Y.J. Hu, H. Jiang, C.Z. Li, High-efficiency Mo doping stabilized LiNi0.9Co0.1O2 cathode materials for rapid charging and long-life Liion batteries, Chem. Eng. Sci. 217(2020) 115518. [22] H.F. Yu, Y.G. Li, Y.J. Hu, H. Jiang, C.Z. Li, 110th anniversary:concurrently coating and doping high-valence vanadium in nickel-rich lithiated oxides for high-rate and stable lithium-ion batteries, Ind. Eng. Chem. Res. 58(10) (2019) 4108-4115. [23] H.-H. Ryu, N.-Y. Park, D.R. Yoon, U.-H. Kim, C.S. Yoon, Y.-K. Sun, New class of Ni-rich cathode materials Li[NixCoyB1-x-y]O2 for next lithium batteries, Adv. Energy Mater. 10(25) (2020) 2000495. [24] Z.F. Yang, H.F. Yu, Y.J. Hu, H.W. Zhu, Y.H. Zhu, H. Jiang, C.Z. Li, Pomegranate-like Ti-doped LiNi0.4Mn1.6O45 V-class cathode with superior high-voltage cycle and rate performance for Li-ion batteries, Chem. Eng. Sci. 231(2021) 116297. [25] G. Shang, Y. Tang, Y. Lai, J. Wu, X. Yang, H. Li, C. Peng, J. Zheng, Z. Zhang, Enhancing structural stability unto 4.5 V of Ni-rich cathodes by tungstendoping for lithium storage, J. Power Sources 423(2019) 246-254. [26] B. Li, H.J. Yan, J. Ma, P.R. Yu, D.G. Xia, W.F. Huang, W.S. Chu, Z.Y. Wu, Manipulating the electronic structure of Li-rich manganese-based oxide using polyanions:Towards better electrochemical performance, Adv. Funct. Mater. 24(32) (2014) 5112-5118. [27] H.-Z. Zhang, F. Li, G.-L. Pan, G.-R. Li, X.-P. Gao, The effect of polyanion-doping on the structure and electrochemical performance of Li-rich layered oxides as cathode for lithium-ion batteries, J. Electrochem. Soc. 162(9) (2015) A1899-A1904. [28] Q. Ran, H. Zhao, X. Shu, Y. Hu, S. Hao, Q. Shen, W. Liu, J. Liu, M. Zhang, H. Li, X. Liu, Enhancing the electrochemical performance of Ni-rich layered oxide cathodes by combination of the gradient doping and dual-conductive layers coating, ACS Appl. Energy Mater. 2(5) (2019) 3120-3130. [29] Q. Ran, H. Zhao, Q. Wang, X. Shu, Y. Hu, S. Hao, M. Wang, J. Liu, M. Zhang, H. Li, N. Liu, X. Liu, Dual functions of gradient phosphate polyanion doping on improving the electrochemical performance of Ni-rich LiNi0.6Co0.2Mn0.2O2 cathode at high cut-off voltage and high temperature, Electrochim. Acta 299(2019) 971-978. [30] H.F. Yu, S.L. Wang, Y.J. Hu, G.J. He, L.Q. Bao, I.P. Parkin, H. Jiang, Lithiumconductive LiNbO3 coated high-voltage LiNi0.5Co0.2Mn0.3O2 cathode with enhanced rate and cyclability, Green Energy Environ. (2020), https://doi.org/10.1016/j.gee.2020.09.011 (in press). [31] Y.G. Lia, T.X. Lei, Y.X. Chen, P.L. Li, W. Li, J.C. Zheng, J. Zhu, S.Y. Deng, G.L. Cao, Tungsten-consolidated crystal structure of LiNi0.6Co0.2Mn0.2O2 cathode materials for superior electrochemical performance, Appl. Surf. Sci. 509(2020) 145287. [32] Y. Zhao, J.T. Liu, S.B. Wang, R. Ji, Q.B. Xia, Z.P. Ding, W.F. Wei, Y. Liu, P. Wang, D. G. Ivey, Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides:Implications for enhanced electrochemical performance, Adv. Funct. Mater. 26(26) (2016) 4760-4767. [33] J. Li, M.L. Zhang, D.Y. Zhang, Y.X. Yan, Z.M. Li, An effective doping strategy to improve the cyclic stability and rate capability of Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode, Chem. Eng. J. 402(2020) 126195. [34] F. Meng, R. Hu, Z. Chen, L. Tan, X. Lan, B. Yuan, Plasma assisted synthesis of LiNi0.6Co0.2Mn0.2O2 cathode materials with good cyclic stability at subzero temperatures, J. Energy Chem. 56(2021) 46-55. [35] L.-b. Tang, Y. Liu, H.-X. Wei, C. Yan, Z.-J. He, Y.-J. Li, J.-C. Zheng, Boosting cell performance of LiNi0.8Co0.1Mn0.1O2 cathode material via structure design, J. Energy Chem. 55(2021) 114-123. [36] X.L. Liu, S. Wang, L. Wang, K. Wang, X.Z. Wu, P.F. Zhou, Z.C. Miao, J. Zhou, Y. Zhao, S.P. Zhuo, Stabilizing the high-voltage cycle performance of LiNi0.8Co0.1Mn0.1O2 cathode material by Mg doping, J. Power Sources 438(2019) 227017. [37] H.H. Ryu, K.J. Park, D.R. Yoon, A. Aishova, C.S. Yoon, Y.K. Sun, Li[Ni0.9Co0.09W0.01]O2:A new type of layered oxide cathode with high cycling stability, Adv. Energy Mater. 9(44) (2019) 1902698. [38] J.H. Kim, H. Kim, W. Choi, M.-S. Park, Bifunctional surface coating of LiNbO3 on high-Ni layered cathode materials for lithium-ion batteries, ACS Appl. Mater. Interfaces 12(31) (2020) 35098-35104. [39] W.D. Li, X.M. Liu, Q. Xie, Y. You, M.F. Chi, A. Manthiram, Long-term cyclability of NCM-811 at high voltages in lithium-ion batteries:An in-depth diagnostic study, Chem. Mater. 32(18) (2020) 7796-7804. [40] X. Zhang, L. Zou, Y. Xu, X. Cao, M.H. Engelhard, B.E. Matthews, L. Zhong, H. Wu, H. Jia, X. Ren, P. Gao, Z. Chen, Y. Qin, C. Kompella, B.W. Arey, J. Li, D. Wang, C. Wang, J.-G. Zhang, W. Xu, Advanced electrolytes for fast-charging high-voltage lithium-ion batteries in wide-temperature range, Adv. Energy Mater. 10(22) (2020) 2000368. [41] H. Yu, Z. Yang, H. Zhu, H. Jiang, C. Li, Nitrogen-doped carbon stabilized LiFe0.5Mn0.5PO4/rGO cathode materials for high-power Li-ion batteries, Chin. J. Chem. Eng. 28(7) (2020) 1935-1940. [42] R. Wang, J. Wang, S. Chen, Q. Yuan, D.H. Li, X.Y. Zhang, L. Chen, Y.F. Su, G.Q. Tan, F. Wu, Effectively stabilizing electrode/electrolyte interface of high-energy LiNi0.9Co0.1O2//Si-C system by simple cathode surface-coating, Nano Energy 76(2020) 105065. |