[1] X. Shen, X.Q. Zhang, F. Ding, J.Q. Huang, R. Xu, X. Chen, C. Yan, F.Y. Su, C.M. Chen, X.J. Liu, Q. Zhang, Advanced electrode materials in lithium batteries:Retrospect and prospect, Energy Mater. Adv. 2021(2021) 1205324. [2] F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries, Chem. Soc. Rev. 49(2020) 1569-1614. [3] R.H. Wang, W.S. Cui, F.L. Chu, F.X. Wu, Lithium metal anodes:Present and future, J. Energy Chem. 48(2020) 145-159. [4] Y.X. Yao, X.Q. Zhang, B.Q. Li, C. Yan, P.Y. Chen, J.Q. Huang, Q. Zhang, A compact inorganic layer for robust anode protection in lithium-sulfur batteries, InfoMat 2(2020) 379-388. [5] J. Zheng, M.S. Kim, Z. Tu, S. Choudhury, T. Tang, L.A. Archer, Regulating electrodeposition morphology of lithium:towards commercially relevant secondary Li metal batteries, Chem. Soc. Rev. 49(2020) 2701-2750. [6] K.N. Wood, M. Noked, N.P. Dasgupta, Lithium metal anodes:Toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior, ACS Energy Lett. 2(2017) 664-672. [7] H. Liu, X.B. Cheng, Z.H. Jin, R. Zhang, G.X. Wang, L.Q. Chen, Q.B. Liu, J.Q. Huang, Q. Zhang, Recent advances in understanding dendrite growth on alkali metal anodes, Energy Chem 1(2019) 100003. [8] J.F. Ding, R. Xu, C. Yan, Y. Xiao, Y.R. Liang, H. Yuan, J.Q. Huang, Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries, Chin. Chem. Lett. 31(2020) 2339-2342. [9] J. Liu, H. Yuan, X. Tao, Y. Liang, S.J. Yang, J.Q. Huang, T.Q. Yuan, M.M. Titirici, Q. Zhang, Recent progress on biomass-derived ecomaterials toward advanced rechargeable lithium batteries, EcoMat 2(2020) e12019. [10] J. Xiao, How lithium dendrites form in liquid batteries, Science 366(2019) 426-427. [11] R.R. Chianelli, J.C. Scanlon, B.M.L. Rao, In situ studies of electrode reactions:The mechanism of lithium intercalation in TiS2, J. Solid State Chem. 29(1979) 323-337. [12] J.H. Um, S.H. Yu, Unraveling the mechanisms of lithium metal plating/stripping via in situ/operando analytical techniques, Adv. Energy Mater. 11(27) (2020) 2003004. [13] T. Foroozan, S. Sharifi-Asl, R. Shahbazian-Yassar, Mechanistic understanding of Li dendrites growth by in-situ/operando imaging techniques, J. Power Sources 461(2020) 228135. [14] X. Shen, R. Zhang, X.B. Cheng, C. Guan, J.Q. Huang, Q. Zhang, Recent progress on in-situ observation and growth mechanism of lithium metal dendrites, Energy Storage Sci. Technol. 6(2017) 345-360. [15] H. Liu, X.B. Cheng, R. Xu, X.Q. Zhang, C. Yan, J.Q. Huang, Q. Zhang, Plating/stripping behavior of actual lithium metal anode, Adv. Energy Mater. 9(44) (2019) 1902254. [16] H.L. Fan, C.H. Gao, H. Jiang, Q.Y. Dong, B. Hong, Y.Q. Lai, A systematical study on the electrodeposition process of metallic lithium, J. Energy Chem. 49(2020) 59-70. [17] Y. Ma, S. Li, B. Wei, Probing the dynamic evolution of lithium dendrites:a review of in situ/operando characterization for lithium metallic batteries, Nanoscale 11(2019) 20429-20436. [18] E. Peled, The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems-the solid electrolyte interphase model, J. Electrochem. Soc. 126(1979) 2047-2051. [19] Y.R. Liang, Y. Xiao, C. Yan, R. Xu, J.F. Ding, J. Liang, H.J. Peng, H. Yuan, J.Q. Huang, A bifunctional ethylene-vinyl acetate copolymer protective layer for dendrites-free lithium metal anodes, J. Energy Chem. 48(2020) 203-207. [20] Y. Shi, J. Wan, G.X. Liu, T.T. Zuo, Y.X. Song, B. Liu, Y.G. Guo, R. Wen, L.J. Wan, Interfacial Evolution of Lithium Dendrite and Its Solid Electrolyte Interphase Shell in Quasi-Solid-State Lithium Batteries, Angew. Chem. Int. Ed. 59(2020) 18120-18125. [21] M. Golozar, P. Hovington, A. Paolella, S. Bessette, M. Lagace, P. Bouchard, H. Demers, R. Gauvin, K. Zaghib, In situ scanning electron microscopy detection of carbide nature of dendrites in Li-polymer batteries, Nano Lett. 18(2018) 7583-7589. [22] I. Yoshimatsu, T. Hirai, J. Yamaki, Lithium electrode morphology during cycling in lithium cells, J. Electrochem. Soc. 135(1988) 2422-2427. [23] Y. He, X. Ren, Y. Xu, M.H. Engelhard, X. Li, J. Xiao, J. Liu, J.G. Zhang, W. Xu, C. Wang, Origin of lithium whisker formation and growth under stress, Nat. Nanotech. 14(2019) 1042-1047. [24] J. Steiger, G. Richter, M. Wenk, D. Kramer, R. Monig, Comparison of the growth of lithium filaments and dendrites under different conditions, Electrochem. Commun. 50(2015) 11-14. [25] P. Bai, J. Li, F.R. Brushett, M.Z. Bazant, Transition of lithium growth mechanisms in liquid electrolytes, Energy Environ. Sci. 9(2016) 3221-3229. [26] J. Steiger, D. Kramer, R. Monig, Microscopic observations of the formation, growth and shrinkage of lithium moss during electrodeposition and dissolution, Electrochim. Acta 136(2014) 529-536. [27] C. Brissot, M. Rosso, J.N. Chazalviel, P. Baudry, S. Lascaud, In situ study of dendritic growth in lithium/PEO-salt/lithium cells, Electrochim. Acta 43(1998) 1569-1574. [28] B.S. Vishnugopi, F. Hao, A. Verma, P.P. Mukherjee, Surface diffusion manifestation in electrodeposition of metal anodes, Phys. Chem. Chem. Phys. 22(2020) 11286-11295. [29] M. Jäckle, K. Helmbrecht, M. Smits, D. Stottmeister, A. Groß, Self-diffusion barriers:Possible descriptors for dendrite growth in batteries?, Energy Environ Sci. 11(2018) 3400-3407. [30] P. Bai, J.Z. Guo, M. Wang, A. Kushima, L. Su, J. Li, F.R. Brushett, M.Z. Bazant, Interactions between lithium growths and nanoporous ceramic separators, Joule 2(2018) 2434-2449. [31] X.Y. Xu, Y.Y. Liu, J.Y. Hwang, O.O. Kapitanova, Z.X. Song, Y.K. Sun, A. Matic, S.Z. Xiong, Role of Li-ion depletion on electrode surface:Underlying mechanism for electrodeposition behavior of lithium metal anode, Adv. Energy Mater. 10(2020) 2002390. [32] R. Zhang, X. Shen, J.F. Wang, Q. Zhang, Plating of Li ions in 3D structured lithium metal anodes, CIESC J. 71(2020) 2688-2695. (in Chinese) [33] Z.K. Lin, Y.X. Qiao, W. Wang, H. Yuan, C. Fan, K.N. Sun, Morphology prediction of lithium plating by finite element modeling and simulations based on nonlinear kinetics, CIESC J. 71(2020) 4228-4237. (in Chinese) [34] A. Jana, S.I. Woo, K.S.N. Vikrant, R.E. García, Electrochemomechanics of lithium dendrite growth, Energy Environ. Sci. 12(2019) 3595-3607. [35] Y. Zhu, J. Xie, A. Pei, B. Liu, Y. Wu, D. Lin, J. Li, H. Wang, H. Chen, J. Xu, A. Yang, C. L. Wu, H. Wang, W. Chen, Y. Cui, Fast lithium growth and short circuit induced by localized-temperature hotspots in lithium batteries, Nat. Commun. 10(2019) 2067. [36] C.T. Love, O.A. Baturina, K.E. Swider-Lyons, Observation of lithium dendrites at ambient temperature and below, ECS Electrochem. Lett. 4(2015) A24-A27. [37] R. Zhang, X. Shen, X.B. Cheng, Q. Zhang, The dendrite growth in 3D structured lithium metal anodes:Electron or ion transfer limitation?, Energy Storage Mater 23(2019) 556-565. [38] D.R. Ely, A. Jana, R.E. García, Phase field kinetics of lithium electrodeposits, J. Power Sources 272(2014) 581-594. [39] L. Chen, H.W. Zhang, L.Y. Liang, Z. Liu, Y. Qi, P. Lu, J. Chen, L.Q. Chen, Modulation of dendritic patterns during electrodeposition:A nonlinear phasefield model, J. Power Sources 300(2015) 376-385. [40] L.O. ValoEn, J.N. Reimers, Transport properties of LiPF6-based Li-ion battery electrolytes, J. Electrochem. Soc. 152(2005) A882-A891. [41] W.M. Haynes, D.R. Lide, T.J. Bruno, CRC handbook of chemistry and physics, Boca Raton, 97th Edition., CRC Press, Boca Raton, 2016. [42] K.N. Wood, E. Kazyak, A.F. Chadwick, K.H. Chen, J.G. Zhang, K. Thornton, N.P. Dasgupta, Dendrites and pits:Untangling the complex behavior of lithium metal anodes through operando video microscopy, ACS Cent, Sci 2(2016) 790-801. [43] K.H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, N.P. Dasgupta, Dead lithium:Mass transport effects on voltage, capacity, and failure of lithium metal anodes, J. Mater. Chem. A 5(2017) 11671-11681. [44] G. Rong, X. Zhang, W. Zhao, Y. Qiu, M. Liu, F. Ye, Y. Xu, J. Chen, Y. Hou, W. Li, W. Duan, Y. Zhang, Liquid-phase electrochemical scanning electron microscopy for in situ investigation of lithium dendrite growth and dissolution, Adv. Mater. 29(2017) 1606187. [45] A. Pei, G.Y. Zheng, F.F. Shi, Y.Z. Li, Y. Cui, Nanoscale nucleation and growth of electrodeposited lithium metal, Nano Lett. 17(2017) 1132-1139. [46] H.J.S. Sand III, On the concentration at the electrodes in a solution, with special reference to the liberation of hydrogen by electrolysis of a mixture of copper sulphate and sulphuric acid, Philos. Mag. 17(1956) 496-534. [47] J.N. Chazalviel, Electrochemical aspects of the generation of ramified metallic electrodeposits, Phys. Rev. A 42(1990) 7355-7367. [48] C. Yan, H. Yuan, H.S. Park, J.Q. Huang, Perspective on the critical role of interface for advanced batteries, J. Energy Chem. 47(2020) 217-220. [49] P. Shi, X.Q. Zhang, X. Shen, R. Zhang, H. Liu, Q. Zhang, A Review of Composite Lithium Metal Anode for Practical Applications, Adv. Mater. Technol. 5(2020) 1900806. |