[1] M.R. Mehrasbi, J. Mohammadi, M. Peyda, M. Mohammadi, Covalent immobilization of Candida antarctica lipase on core-shell magnetic nanoparticles for production of biodiesel from waste cooking oil, Renew. Energy. 101(2017) 593-602. [2] K.R. Jegannathan, L. Jun-Yee, E.S. Chan, P. Ravindra, Production of biodiesel from palm oil using liquid core lipase encapsulated in j-carrageenan, Fuel. 89(2010) 2272-2277. [3] J.H. Lee, C.H. Kwon, J.W. Kang, C. Park, B. Tae, S.W. Kim, Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method, Appl. Biochem. Biotechnol. 156(2009) 24-34. [4] B. Thangaraj, Z. Jia, L. Dai, D. Liu, W. Du, Effect of silica coating on Fe3O4 magneticnanoparticles for lipase immobilization and their application for biodiesel production, Ara. J. Chem. 12(8) (2019) 4694-4706. [5] G. Bayramoğlu, B. Hazer, B. Altıntaş, M.Y. Arıca, Covalent immobilization of lipase onto amine functionalized polypropylene membrane and its application in green apple flavor (ethyl valerate) synthesis, Process. Biochem. 46(2011) 372-378. [6] S. Arana-Peña, N.S. Rios, C. Mendez-Sanchez, Y. Lokha, L.R.B. Gonçalves, R. Fernández-Lafuente, Use of polyethylenimine to produce immobilized lipase multilayers biocatalysts using octyl-agarose beads with very high volumetric activity:Avoiding enzyme release during multilayer production, Enzyme. Microb. Technol. 137(2020) 109535. [7] Y. Li, C.h. Zhang, Y. Sun, Zwitterionic polymer-coated porous poly(vinyl acetate-divinyl benzene) microsphere:A new support for enhanced performance of immobilized lipase, Chin. J. Chem. Eng. 28(2020) 242-248. [8] K. Pashangeh, M. Akhond, H.R. Karbalaei-Heidari, G. Absalan, Biochemical characterization and stability assessment of Rhizopus oryzae lipase covalently immobilized on amino-functionalized magnetic nanoparticles, Int. J. Biol. Macromol. 105(2017) 300-307. [9] I. Francolini, V. Taresco, A. Martinelli, A. Piozzi, Enhanced performance of Candida rugosa lipase immobilized onto alkyl chain modified-magnetic nanocomposites, Enzyme. Microb. Technol. 132(2020) 109439. [10] M. Kalantari, M. Kazemeini, F. Tabandeha, A. Arpanaei, Lipase immobilisation on magnetic silica nanocomposite particles:Effects of the silica structure on properties of the immobilised enzyme, J. Mater. Chem. 22(2012) 8385-8393. [11] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72(1976) 248-254. [12] A.M. Brzozowski, Z.S. Derewenda, E.J. Dodson, G.G. Dodson, J.P. Turkenburg, Structure and molecular model refinement of Rhizomucor miehei triacyglyceride lipase:A case study of the use of simulated annealing in partial model refinement, Acta. Cryst. 48(1992) 307-319. [13] M. Besharati Vineh, A.A. Saboury, A.A. Poostchi, A.M. Rashidi, K. Parivar, Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradation of high phenol concentration, Int. J. Biol. Macromol. 106(2018) 1314-1322. [14] F. Beisson, A. Tiss, C. Rivière, R. Verger, Methods for lipase detection and assay:A critical review, Eur. J. Lipid. Sci. Technol. 102(2000) 133-153. [15] C.S. Wu, C.T. Wu, Y.S. Yang, F.H. Ko, An enzymatic kinetics investigation into the significantly enhanced activity of functionalized gold nanoparticles, Chem. Commun. (Camb) 42(2008) 5327-5329. [16] A.A. Saboury, Enzyme inhibition and activation:A general theory, JICS. 6(2009) 219-229. [17] F. Mamashli, J. Badraghi, B. Delavari, M. Sabbaghian, M. Hosseini, A.A. Saboury, Evaluation of versatile peroxidase's activity and conformation in the presence of a hydrated urea based deep eutectic solvent, J. Solution. Chem. 48(2019) 689-701. [18] M. Hosseini-Koupaeia, B. Shareghia, A.A. Saboury, F. Davar, V.A. Sirotkine, M.H. Hosseini-Koupaei, Z. Enteshari, Catalytic activity, structure and stability of proteinase K in the presence of biosynthesized CuO nanoparticles, Int. J. Biol. Macromol. 122(2019) 732-744. [19] H. Nedaei, A.A. Saboury, Z. Zolmajd Haghighi, A. Ghasemi, Nile red compensates for thioflavin T assay biased in the presence of curcumin, J. Lumin. 195(2018) 1-7. [20] F. David, P. Sandra, P.L. Wylie, Improving the Analysis of Fatty Acid Methyl Esters Using Retention Time Locked Methods and Retention Time Databases, Agilent Technologies (2003). [21] M. Mostafaei, B. Ghobadian, M. Barzegar, A. Banakar, Optimization of ultrasonic assisted continuous production of biodiesel using response surface methodology, Ultrasonics Sonochemistry 27(2015) 54-61. [22] M. Maghami, S. Sadrameli, B. Ghobadian, Production of biodiesel from fishmeal plant waste oil using ultrasonic and conventional methods, Appl. Therm. Eng. 75(2015) 575-579. [23] H. Wang, J. Huang, L. Ding, D.P. Li, Y. Han, A facile synthesis of monodisperse CoFe2O4/SiO2 nanoparticles, Appl. Surf. Sci. 257(2011) 7107-7112. [24] S.S. Saire, S.G. Segura, C. Luyo, L.H. Andrade, H. Alarcon, Magnetic bionanocomposite catalysts of CoFe2O4/hydroxyapatite-lipase for enantioselective synthesis provide a framework for enzyme recovery and reuse, Int. J. Biol. Macromol. 148(2020) 284-291. [25] D. Greene, R.S. Garcia, J. Govan, Y.K. Gun'ko, Synthesis Characterization and Photocatalytic Studies of Cobalt Ferrite-Silica-Titania Nanocomposites, Nanomaterials. 4(2014) 331-343. [26] R.A. Bohara, N.D. Thorat, S.H. Pawar, Immobilization of cellulase on functionalized cobalt ferrite nanoparticles, Korean. J. Chem. Eng. 33(2016) 216-222. [27] A. Hiol, M.D. Jonzo, N. Rugani, D. Druet, L. Sarda, L.C. Comeau, Purification and characterization of an extracellular lipase from a thermophilic Rhizopus oryzae strain isolated from palm fruit, Enzyme. Microb. Technol. 26(2000) 421-430. [28] S. Lin, M. Xu, W. Zhang, X. Hua, K. Lin, Quantitative effects of amination degree on the magnetic iron oxide nanoparticles (MIONPs) using as adsorbents to remove aqueous heavy metal ions, J. Hazard. Mater. 335(2017) 47-55. [29] J.F. Zhao, J.P. Lin, L.R. Yang, M.B. Wu, Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1, 3-Diacyglycerol, Appl. Biochem. Biotechnol. 188(2019) 677-689. [30] M. Babaki, M. Yousefi, Z. Habibi, J. Brask, M. Mohammadi, Preparation of highly reusable biocatalysts by immobilization of lipases on epoxy-functionalized silica for production of biodiesel from canola oil, Biochem. Eng. J. 101(2015) 23-31. [31] R. Das, M. Talat, O.N. Srivastava, A.M. Kayastha, Covalent immobilization of peanut β-amylase for producing industrial nano-biocatalysts:A comparative study of kinetics, stability and reusability of the immobilized enzyme, Food. Chem. 245(2018) 488-499. [32] F. Mamashli, J. Badraghi, B. Delavari, H. Lanjanian, M. Sabbaghian, M. Hosseini, A.A. Saboury, Improvement of versatile peroxidase activity and stability by a cholinium-based ionic liquid, J. Mol. Liq. 272(2018) 597-608. [33] T.E. Creighton, Protein structure:A practical approach, J. Med. Chem. 41(1998) 1352-1353. [34] A.A. Saboury, A.A. Moosavi-Movahedi, Derivation of the thermodynamic parameters involved in the elucidation of protein thermal profiles, Biochem. Educ. 23(1995) 164-167. [35] Z. Zolmajd-Haghighi, Q.S. Hanley, When one plus one does not equal two:fluorescence anisotropy in aggregates and multiply labeled proteins, Biophys. J. 106(2014) 1457-1466. [36] M. Kalantari, M. Kazemeini, A. Arpanaei, Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures, Biochem. Eng. J. 79(2013) 267-273. [37] T. Nematian, M. Barati, Nanobiocatalytic processes for producing biodiesel from algae, Sustainable Bioenergy. Book chapter. Elsevier. (2019) 299-326. |