[1] M. Sharifi, S.-M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies:characterization and stability studies, Chin. J. Chem. Eng. 27(1) (2019) 191-199. [2] N. Chen, C. Zhang, X. Dong, Y. Sun, Fabrication and characterization of epoxylated zwitterionic copolymer-grafted silica nanoparticle as a new support for lipase immobilization, Chin. J. Chem. Eng. 28(4) (2019) 1129-1135. [3] Y. Li, C. Zhang, Y. Sun, Zwitterionic polymer-coated porous poly(vinyl acetate-divinyl benzene) microsphere:A new support for enhanced performance of immobilized lipase, Chin. J. Chem. Eng. 28(1) (2019) 242-248. [4] H. Zhou, W. Li, Q. Shou, H. Gao, P. Xu, F. Deng, H. Liu, Immobilization of penicillin G acylase on magnetic nanoparticles modified by ionic liquids, Chin. J. Chem. Eng. 20(1) (2012) 146-151. [5] Y. Li, J. Hu, P. Han, Synthesis of magnetically modified palygorskite composite for immobilization of Candida sp. 99-125 lipase via adsorption, Chin. J. Chem. Eng. 23(5) (2015) 822-826. [6] J. Wang, F. Ji, J. Xing, S. Cui, Y. Bao, W. Hao, Lipase immobilization onto the surface of PGMA-b-PDMAEMA-grafted magnetic nanoparticles prepared via atom transfer radical polymerization, Chin. J. Chem. Eng. 22(11-12) (2014) 1333-1339. [7] Z. Li, L. Deng, J. Lu, X. Guo, Z. Yang, T. Tan, Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99-125, Chin. J. Chem. Eng. 18(5) (2010) 870-875. [8] A. Wang, C. Zhou, H. Wang, S. Shen, J. Xue, P. Ouyang, Covalent assembly of penicillin acylase in mesoporous silica based on macromolecular crowding theory, Chin. J. Chem. Eng. 15(6) (2007) 788-790. [9] C. Yin, T. Liu, T. Tan, Synthesis of vitamin a esters by immobilized Candida sp. lipase in organic media, Chin. J. Chem. Eng. 14(1) (2006) 81-86. [10] L. Zhou, H. Mou, J. Gao, L. Ma, Y. He, Y. Jiang, Preparation of cross-linked enzyme aggregates of nitrile hydratase ES-NHT-118 from E. coli by macromolecular crosslinking agent, Chin. J. Chem. Eng. 25(4) (2017) 487-492. [11] L. Deng, X. Wang, K. Nie, F. Wang, J. Liu, P. Wang, T. Tan, Synthesis of wax esters by lipase-catalyzed esterification with immobilized lipase from Candida sp. 99-125, Chin. J. Chem. Eng. 19(6) (2011) 978-982. [12] P.P. Chen, L.J. Gong, Y.Q. Lv, New development and application of porous monoliths as solid supports for immobilization of enzymes, Chin. J. Bioprocess. Eng. 17(1) (2019) 36-43. [13] Y.X. Bai, X. Cao, J. Ge, Advances in enzyme-polymer conjugates and enzymeinorganic crystal composites, Chin. J. Bioprocess. Eng. 16(1) (2018) 12-18. [14] H. Cheng, Y. Chen, H.J. Ying, Preparation of bacterial cellulose membrane with amino group as carrier and its immobilization of β-galactosidase, Chin. J. Bioprocess. Eng. 13(6) (2015) 36-42. [15] L.K. Zhang, Y.M. Xiao, W.H. Yang, J.Y. Li, Immobilization of L-glutamate oxidase by ES-105 epoxy resin, Chin. J. Bioprocess. Eng. 16(4) (2018) 30-35. [16] W.T. Xu, W.D. Bi, F.D. Cong, W.Q. Yu, S.L. Zhang, W. Yang, W. Luo, Immobilized Aspergillus niger lipase catalyzed synthesis of L-ascorbyl palmitate in nonaqueous medium, Chin. J. Bioprocess. Eng. 16(2018) 36-39. [17] Q.L. Li, Z. Xu, J.M. Xu, Preparation of silica carrier immobilized threonine deaminase bybionic method and its enzymatic properties, Chin. J. Bioprocess. Eng. 15(3) (2017) 12-17. [18] A.D. Pereira, M.M. Diniz, G. De Jong, H.S. Gama, M.J. dos Anjos, P.V. Finotelli, G.C. Fontes-Sant'Ana, P.F.F. Amaral, Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase:morphological, physico-chemical and kinetic characteristics, Int. J. Biol. Macromol. 139(2019) 621-630. [19] Q. Huo, J.J. Zhao, W.R. Li, D. Yang, S.P. Zhang, J.F. Shi, Z.Y. Jiang, Crackled nanocapsules:the "imperfect" structure for enzyme immobilization, Chem. Commun. 55(50) (2019) 7155-7158. [20] S.H. Zhang, J.F. Shi, Y.S. Zhang, Y.Z. Wu, Y.X. Chen, P.B. Messersmith, Z.Y. Jiang, Polymer@MOFs capsules prepared through controlled interfacial mineralization for switching on/off enzymatic reactions, Appl. Mater. Today 13(2018) 320-328. [21] A.D. Pereira, J.L. Fraga, M.M. Diniz, G.C. Fontes-Sant'Ana, P.F.F. Amaral, High catalytic activity of lipase from yarrowia lipolytica immobilized by microencapsulation, Int. J. Mol. Sci. 19(11) (2018) 3393. [22] G. Begum, S. Lalwani, R.K. Rana, Designing microreactors resembling cellular microenvironment via polyamine-mediated nanoparticle-assembly for tuning glucose oxidase kinetics, Bioconjug. Chem. 29(8) (2018) 2586-2593. [23] R.L. Huang, S.K. Wu, A.T. Li, Z. Li, Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization, J. Mater. Chem. A 2(6) (2014) 1672-1676. [24] J.F. Shi, X.M. Zhang, S.H. Zhang, X.L. Wang, Z.Y. Jiang, Incorporating mobile nanospheres in the lumen of hybrid microcapsules for enhanced enzymatic activity, ACS Appl. Mater. Interfaces 5(21) (2013) 10433-10436. [25] L. Zhang, Y.Q. Wang, N. Tang, P.G. Cheng, J. Xiang, W. Du, X.K. Wang, Bioinspired stability improvement of layer-by-layer microcapsules using a bioadhesive for enzyme encapsulation, React. Funct. Polym. 99(2016) 73-79. [26] X.L. Wang, Z.Y. Jiang, J.F. Shi, Y.P. Liang, C.H. Zhang, H. Wu, Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization, ACS Appl. Mater. Interfaces 4(7) (2012) 3476-3483. [27] R. Varshney, S. Sharma, B. Prakash, J.K. Laha, D. Patra, One-step fabrication of enzyme-immobilized reusable polymerized microcapsules from microfluidic droplets, ACS Omega 4(9) (2019) 13790-13794. [28] S.H. Zhang, Z.Y. Jiang, J.F. Shi, X.Y. Wang, P.P. Han, W.L. Qian, An efficient, recyclable, and stable immobilized biocatalyst based on bioinspired microcapsules-in-hydrogel scaffolds, ACS Appl. Mater. Interfaces 8(38) (2016) 25152-25161. [29] W. Cao, R.L. Huang, W. Qi, R.X. Su, Z.M. He, Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media, ACS Appl. Mater. Interfaces 7(1) (2015) 465-473. [30] M.P. Guerrero, F. Bertrand, D. Rochefort, Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules, Chem. Eng. Sci. 66(21) (2011) 5313-5320. [31] X. Wang, K.X. Zhu, H.M. Zhou, Immobilization of glucose oxidase in alginatechitosan microcapsules, Int. J. Mol. Sci. 12(5) (2011) 3042-3054. [32] J.D. Li, H. Liu, X.D. Wang, D.Z. Wu, Development of thermoregulatory enzyme carriers based on microencapsulated n-docosane phase change material for biocatalytic enhancement of amylases, ACS Sustain. Chem. Eng. 5(9) (2017) 8396-8406. [33] R.L. Huang, M.Y. Wu, M.J. Goldman, Z. Li, Encapsulation of enzyme via one-step template-free formation of stable organic inorganic capsules:a simple and efficient method for immobilizing enzyme with high activity and recyclability, Biotechnol. Bioeng. 112(6) (2015) 1092-1101. [34] A. Savolainen, Y.F. Zhang, D. Rochefort, U. Holopainen, T. Erho, J. Virtanen, M. Smolander, Printing of polymer microcapsules for enzyme immobilization on paper substrate, Biomacromolecules 12(6) (2011) 2008-2015. [35] C. Hou, Y. Wang, H. Zhu, H. Wei, Construction of enzyme immobilization system through metal-polyphenol assisted Fe3O4/chitosan hybrid microcapsules, Chem. Eng. J. 283(2016) 397-403. [36] J.D. Cui, Y.M. Zhao, Z.L. Tan, Z. Cheng, P.P. Han, S.R. Jia, Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating, Int. J. Biol. Macromol. 98(2017) 887-896. [37] Y. Wang, C. Hou, Y. Zhang, F. He, M.Z. Liu, X.L. Li, Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose, J. Mater. Chem. A 4(21) (2016) 3695-3702. [38] C. Yang, H. Wu, X. Yang, J.F. Shi, X.L. Wang, S.H. Zhang, Z.Y. Jiang, Coordinationenabled one-step assembly of ultrathin, hybrid microcapsules with weak pHresponse, ACS Appl. Mater. Interfaces 7(17) (2015) 9178-9184. [39] S.H. Zhang, Z.Y. Jiang, W.Y. Zhanga, X.L. Wang, J.F. Shi, Polymer-inorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization, Biochem. Eng. J. 93(2015) 281-288. [40] X.L. Wang, J.F. Shi, S.H. Zhang, H. Wu, Z.Y. Jiang, C. Yang, Y.X. Wang, L. Tang, A.F. Yan, MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization, J. Mater. Chem. B 3(32) (2015) 6587-6598. [41] C. Hou, Y. Wang, H. Zhu, L.C. Zhou, Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization, J. Mater. Chem. B 3(14) (2015) 2883-2891. [42] X.L. Wang, Z. Li, J.F. Shi, H. Wu, Z.Y. Jiang, W.Y. Zhang, X.K. Song, Q.H. Ai, Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction, ACS Catal. 4(3) (2014) 962-972. [43] J.F. Shi, C. Yang, S.H. Zhang, X.L. Wang, Z.Y. Jiang, W.Y. Zhang, X.K. Song, Q.H. Ai, C.Y. Tian, Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization, ACS Appl. Mater. Interfaces 5(20) (2013) 9991-9997. [44] Q. Xin, Y.J. Jiang, J. Gao, L.Y. Zhou, L. Ma, Y. He, F. Jia, Biomimetic preparation of organic-inorganic composite microcapsules for glucose oxidase immobilization, Chin. J. Catal. 34(8) (2013) 1627-1633. [45] L. Zhang, J.F. Shi, Z.Y. Jiang, Y.J. Jiang, R.J. Meng, Y.Y. Zhu, Y.P. Liang, Y. Zheng, Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer, ACS Appl. Mater. Interfaces 3(2) (2011) 597-605. [46] J.J. Richardson, K. Liang, K. Kempe, H. Ejima, J. Cui, F. Caruso, Immersive polymer assembly on immobilized particles for automated capsule preparation, Adv. Mater. 25(47) (2013) 6874-6878. [47] Y.J. Jiang, L.T. Ma, L.Y. Zhou, L. Ma, Y. He, X. Zhang, J. Gao, Structured interlocked-microcapsules:a novel scaffold for enzyme immobilization, Catal. Commun. 88(2017) 35-38. [48] X.L. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51(69) (2015) 13408-13411. [49] X.L. Wu, M. Hou, J. Ge, Metal-organic frameworks and inorganic nanoflowers:a type of emerging inorganic crystal nanocarrier for enzyme immobilization, Catal. Sci. Technol. 5(12) (2015) 5077-5085. [50] Y.F. Cao, X.Y. Li, J.R. Xiong, L.C. Wang, L.T. Yan, J. Ge, Investigating the origin of high efficiency in confined multienzyme catalysis, Nanoscale 11(45) (2019) 22108-22117. [51] X.L. Wu, H. Yue, Y.Y. Zhang, X.Y. Gao, X.Y. Li, L.C. Wang, Y.F. Cao, M. Hou, H.X. An, L. Zhang, S. Li, J.Y. Ma, H. Lin, Y.A. Fu, H.K. Gu, W.Y. Lou, W. Wei, R.N. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat. Commun. 10(2019) 5165. [52] C. Zhang, X.R. Wang, M. Hou, X.Y. Li, X.L. Wu, J. Ge, Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection, ACS Appl. Mater. Interfaces 9(16) (2017) 13831-13836. [53] Y. Li, L.Y. Wen, T.W. Tan, Y.Q. Lv, Sequential co-immobilization of enzymes in metalorganic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate, Front. Bioeng. Biotech. 7(2019) 394. [54] K.P. Cheng, F. Svec, Y.Q. Lv, T.W. Tan, Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels:their use for enzyme immobilization and catalysis of knoevenagel reaction, Small 15(44) (2019) 1902927. [55] S.J. Chen, L.Y. Wen, F. Svec, T.W. Tan, Y.Q. Lv, Magnetic metal-organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis, RSC Adv. 7(34) (2017) 21205-21213. [56] L.Y. Wen, A.C. Gao, Y. Cao, F. Svec, T.W. Tan, Y.Q. Lv, Layer-by-layer assembly of metal-organic frameworks in macroporous polymer monolith and their use for enzyme immobilization, Macromol. Rapid Commun. 37(6) (2016) 551-557. [57] J.Y. Liang, F. Mazur, C.Y. Tang, X.N. Ning, R. Chandrawati, K. Liang, Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades, Chem. Sci. 10(34) (2019) 7852-7858. [58] M. Mohammad, A. Razmjou, K. Liang, M. Asadnia, V. Chen, Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization, ACS Appl. Mater. Interfaces 11(2) (2019) 1807-1820. [59] C. Doonan, R. Ricco, K. Liang, D. Bradshaw, P. Falcaro, Metal-organic frameworks at the biointerface:synthetic strategies and applications, Acc. Chem. Res. 50(6) (2017) 1423-1432. [60] G.Y. Jeong, R. Ricco, K. Liang, J. Ludwig, J.O. Kim, P. Falcaro, D.P. Kim, Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation, Chem. Mater. 27(23) (2015) 7903-7909. [61] X.Z. Lian, Y. Fang, E. Joseph, Q. Wang, J.L. Li, S. Banerjee, C. Lollar, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites, Chem. Soc. Rev. 46(11) (2017) 3386-3401. [62] S. Liang, X.L. Wu, J. Xiong, M.H. Zong, W.Y. Lou, Metal-organic frameworks as novel matrices for efficient enzyme immobilization:An update review, Coord. Chem. Rev. 406(2020) 213149. [63] Y.B. Li, L.H. Wee, A. Volodin, J.A. Martens, I.F.J. Vankelecom, Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method, Chem. Commun. 51(5) (2015) 918-920. [64] F.M. Hinterholzinger, A. Ranft, J.M. Feckl, B. Ruhle, T. Bein, B.V. Lotsch, Onedimensional metal-organic framework photonic crystals used as platforms for vapor sorption, J. Mater. Chem. 22(20) (2012) 10356-10362. [65] Z. Zhang, J. Muschiol, Y. Huang, S.B. Sigurdardóttir, N. von Solms, A.E. Daugaard, J. Wei, J. Luo, B.-H. Xu, S. Zhang, M. Pinelo, Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol, Green Chem. 20(18) (2018) 4339-4348. [66] B. El-Zahab, D. Donnelly, P. Wang, Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes, Biotechnol. Bioeng. 99(3) (2008) 508-514. [67] D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, Fe-based MOFs for photocatalytic CO2 reduction:role of coordination unsaturated sites and dual excitation pathways, ACS Catal. 4(12) (2014) 4254-4260. [68] R. Obert, B.C. Dave, Enzymatic conversion of carbon dioxide to methanol:enhanced methanol production in silica sol-gel matrices, J. Am. Chem. Soc. 121(51) (1999) 12192-12193. [69] D. Zhu, S. Ao, H. Deng, M. Wang, C. Qin, J. Zhang, Y. Jia, P. Ye, H. Ni, Ordered coimmobilization of a multienzyme cascade system with a metal organic framework in a membrane:reduction of CO2 to methanol, ACS Appl. Mater. Interfaces 11(37) (2019) 33581-33588. [70] J. Shi, X. Wang, Z. Jiang, Y. Liang, Y. Zhu, C. Zhang, Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion, Bioresour. Technol. 118(2012) 359-366. [71] Y. Jiang, Q. Sun, L. Zhang, Z. Jiang, Capsules-in-bead scaffold:A rational architecture for spatially separated multienzyme cascade system, J. Mater. Chem. 19(47) (2009) 9068-9074. |