中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (1): 317-325.DOI: 10.1016/j.cjche.2020.07.042
• Special Topic: Biocatalysis • 上一篇 下一篇
Jing Wang, Yongqin Lv
收稿日期:
2020-02-06
修回日期:
2020-06-29
出版日期:
2021-01-28
发布日期:
2021-04-02
通讯作者:
Yongqin Lv
基金资助:
Jing Wang, Yongqin Lv
Received:
2020-02-06
Revised:
2020-06-29
Online:
2021-01-28
Published:
2021-04-02
Contact:
Yongqin Lv
Supported by:
摘要: Ultrathin polydopamine microcapsules with hierarchical structure and porosity were prepared for the immobilization of multienzymes using metal-organic framework (MOF) as the template. The multienzyme/MOF composite was first prepared using a “one-pot” co-precipitation approach via the coordination and self-assembly of zinc ions and 2-methylimidazole in the presence of enzymes. The obtained nanoparticles were then coated with polydopamine thin layer through the self-polymerization of dopamine under alkaline condition. The polydopamine microcapsules with an ultrathin shell thickness of ~48 nm were finally generated by removing the MOF template at acidic condition. Three enzymes were encapsulated in PDA microcapsules including carbonic anhydrase (CA), formate dehydrogenase (FateDH), and glutamate dehydrogenase (GDH). FateDH that catalyzed the main reaction of CO2 reduction to formic acid retained 94.7% activity of equivalent free FateDH. Compared with free multienzymes, the immobilized ones embedded in PDA microcapsules exhibited 4.5-times higher of formate production and high catalytic efficiency with a co-factor-based formate yield of 342%.
Jing Wang, Yongqin Lv. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule[J]. 中国化学工程学报, 2021, 29(1): 317-325.
Jing Wang, Yongqin Lv. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule[J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 317-325.
[1] M. Sharifi, S.-M. Robatjazi, M. Sadri, J.M. Mosaabadi, Immobilization of organophosphorus hydrolase enzyme by covalent attachment on modified cellulose microfibers using different chemical activation strategies:characterization and stability studies, Chin. J. Chem. Eng. 27(1) (2019) 191-199. [2] N. Chen, C. Zhang, X. Dong, Y. Sun, Fabrication and characterization of epoxylated zwitterionic copolymer-grafted silica nanoparticle as a new support for lipase immobilization, Chin. J. Chem. Eng. 28(4) (2019) 1129-1135. [3] Y. Li, C. Zhang, Y. Sun, Zwitterionic polymer-coated porous poly(vinyl acetate-divinyl benzene) microsphere:A new support for enhanced performance of immobilized lipase, Chin. J. Chem. Eng. 28(1) (2019) 242-248. [4] H. Zhou, W. Li, Q. Shou, H. Gao, P. Xu, F. Deng, H. Liu, Immobilization of penicillin G acylase on magnetic nanoparticles modified by ionic liquids, Chin. J. Chem. Eng. 20(1) (2012) 146-151. [5] Y. Li, J. Hu, P. Han, Synthesis of magnetically modified palygorskite composite for immobilization of Candida sp. 99-125 lipase via adsorption, Chin. J. Chem. Eng. 23(5) (2015) 822-826. [6] J. Wang, F. Ji, J. Xing, S. Cui, Y. Bao, W. Hao, Lipase immobilization onto the surface of PGMA-b-PDMAEMA-grafted magnetic nanoparticles prepared via atom transfer radical polymerization, Chin. J. Chem. Eng. 22(11-12) (2014) 1333-1339. [7] Z. Li, L. Deng, J. Lu, X. Guo, Z. Yang, T. Tan, Enzymatic synthesis of fatty acid methyl esters from crude rice bran oil with immobilized Candida sp. 99-125, Chin. J. Chem. Eng. 18(5) (2010) 870-875. [8] A. Wang, C. Zhou, H. Wang, S. Shen, J. Xue, P. Ouyang, Covalent assembly of penicillin acylase in mesoporous silica based on macromolecular crowding theory, Chin. J. Chem. Eng. 15(6) (2007) 788-790. [9] C. Yin, T. Liu, T. Tan, Synthesis of vitamin a esters by immobilized Candida sp. lipase in organic media, Chin. J. Chem. Eng. 14(1) (2006) 81-86. [10] L. Zhou, H. Mou, J. Gao, L. Ma, Y. He, Y. Jiang, Preparation of cross-linked enzyme aggregates of nitrile hydratase ES-NHT-118 from E. coli by macromolecular crosslinking agent, Chin. J. Chem. Eng. 25(4) (2017) 487-492. [11] L. Deng, X. Wang, K. Nie, F. Wang, J. Liu, P. Wang, T. Tan, Synthesis of wax esters by lipase-catalyzed esterification with immobilized lipase from Candida sp. 99-125, Chin. J. Chem. Eng. 19(6) (2011) 978-982. [12] P.P. Chen, L.J. Gong, Y.Q. Lv, New development and application of porous monoliths as solid supports for immobilization of enzymes, Chin. J. Bioprocess. Eng. 17(1) (2019) 36-43. [13] Y.X. Bai, X. Cao, J. Ge, Advances in enzyme-polymer conjugates and enzymeinorganic crystal composites, Chin. J. Bioprocess. Eng. 16(1) (2018) 12-18. [14] H. Cheng, Y. Chen, H.J. Ying, Preparation of bacterial cellulose membrane with amino group as carrier and its immobilization of β-galactosidase, Chin. J. Bioprocess. Eng. 13(6) (2015) 36-42. [15] L.K. Zhang, Y.M. Xiao, W.H. Yang, J.Y. Li, Immobilization of L-glutamate oxidase by ES-105 epoxy resin, Chin. J. Bioprocess. Eng. 16(4) (2018) 30-35. [16] W.T. Xu, W.D. Bi, F.D. Cong, W.Q. Yu, S.L. Zhang, W. Yang, W. Luo, Immobilized Aspergillus niger lipase catalyzed synthesis of L-ascorbyl palmitate in nonaqueous medium, Chin. J. Bioprocess. Eng. 16(2018) 36-39. [17] Q.L. Li, Z. Xu, J.M. Xu, Preparation of silica carrier immobilized threonine deaminase bybionic method and its enzymatic properties, Chin. J. Bioprocess. Eng. 15(3) (2017) 12-17. [18] A.D. Pereira, M.M. Diniz, G. De Jong, H.S. Gama, M.J. dos Anjos, P.V. Finotelli, G.C. Fontes-Sant'Ana, P.F.F. Amaral, Chitosan-alginate beads as encapsulating agents for Yarrowia lipolytica lipase:morphological, physico-chemical and kinetic characteristics, Int. J. Biol. Macromol. 139(2019) 621-630. [19] Q. Huo, J.J. Zhao, W.R. Li, D. Yang, S.P. Zhang, J.F. Shi, Z.Y. Jiang, Crackled nanocapsules:the "imperfect" structure for enzyme immobilization, Chem. Commun. 55(50) (2019) 7155-7158. [20] S.H. Zhang, J.F. Shi, Y.S. Zhang, Y.Z. Wu, Y.X. Chen, P.B. Messersmith, Z.Y. Jiang, Polymer@MOFs capsules prepared through controlled interfacial mineralization for switching on/off enzymatic reactions, Appl. Mater. Today 13(2018) 320-328. [21] A.D. Pereira, J.L. Fraga, M.M. Diniz, G.C. Fontes-Sant'Ana, P.F.F. Amaral, High catalytic activity of lipase from yarrowia lipolytica immobilized by microencapsulation, Int. J. Mol. Sci. 19(11) (2018) 3393. [22] G. Begum, S. Lalwani, R.K. Rana, Designing microreactors resembling cellular microenvironment via polyamine-mediated nanoparticle-assembly for tuning glucose oxidase kinetics, Bioconjug. Chem. 29(8) (2018) 2586-2593. [23] R.L. Huang, S.K. Wu, A.T. Li, Z. Li, Integrating interfacial self-assembly and electrostatic complexation at an aqueous interface for capsule synthesis and enzyme immobilization, J. Mater. Chem. A 2(6) (2014) 1672-1676. [24] J.F. Shi, X.M. Zhang, S.H. Zhang, X.L. Wang, Z.Y. Jiang, Incorporating mobile nanospheres in the lumen of hybrid microcapsules for enhanced enzymatic activity, ACS Appl. Mater. Interfaces 5(21) (2013) 10433-10436. [25] L. Zhang, Y.Q. Wang, N. Tang, P.G. Cheng, J. Xiang, W. Du, X.K. Wang, Bioinspired stability improvement of layer-by-layer microcapsules using a bioadhesive for enzyme encapsulation, React. Funct. Polym. 99(2016) 73-79. [26] X.L. Wang, Z.Y. Jiang, J.F. Shi, Y.P. Liang, C.H. Zhang, H. Wu, Metal-organic coordination-enabled layer-by-layer self-assembly to prepare hybrid microcapsules for efficient enzyme immobilization, ACS Appl. Mater. Interfaces 4(7) (2012) 3476-3483. [27] R. Varshney, S. Sharma, B. Prakash, J.K. Laha, D. Patra, One-step fabrication of enzyme-immobilized reusable polymerized microcapsules from microfluidic droplets, ACS Omega 4(9) (2019) 13790-13794. [28] S.H. Zhang, Z.Y. Jiang, J.F. Shi, X.Y. Wang, P.P. Han, W.L. Qian, An efficient, recyclable, and stable immobilized biocatalyst based on bioinspired microcapsules-in-hydrogel scaffolds, ACS Appl. Mater. Interfaces 8(38) (2016) 25152-25161. [29] W. Cao, R.L. Huang, W. Qi, R.X. Su, Z.M. He, Self-assembly of amphiphilic janus particles into monolayer capsules for enhanced enzyme catalysis in organic media, ACS Appl. Mater. Interfaces 7(1) (2015) 465-473. [30] M.P. Guerrero, F. Bertrand, D. Rochefort, Activity, stability and inhibition of a bioactive paper prepared by large-scale coating of laccase microcapsules, Chem. Eng. Sci. 66(21) (2011) 5313-5320. [31] X. Wang, K.X. Zhu, H.M. Zhou, Immobilization of glucose oxidase in alginatechitosan microcapsules, Int. J. Mol. Sci. 12(5) (2011) 3042-3054. [32] J.D. Li, H. Liu, X.D. Wang, D.Z. Wu, Development of thermoregulatory enzyme carriers based on microencapsulated n-docosane phase change material for biocatalytic enhancement of amylases, ACS Sustain. Chem. Eng. 5(9) (2017) 8396-8406. [33] R.L. Huang, M.Y. Wu, M.J. Goldman, Z. Li, Encapsulation of enzyme via one-step template-free formation of stable organic inorganic capsules:a simple and efficient method for immobilizing enzyme with high activity and recyclability, Biotechnol. Bioeng. 112(6) (2015) 1092-1101. [34] A. Savolainen, Y.F. Zhang, D. Rochefort, U. Holopainen, T. Erho, J. Virtanen, M. Smolander, Printing of polymer microcapsules for enzyme immobilization on paper substrate, Biomacromolecules 12(6) (2011) 2008-2015. [35] C. Hou, Y. Wang, H. Zhu, H. Wei, Construction of enzyme immobilization system through metal-polyphenol assisted Fe3O4/chitosan hybrid microcapsules, Chem. Eng. J. 283(2016) 397-403. [36] J.D. Cui, Y.M. Zhao, Z.L. Tan, Z. Cheng, P.P. Han, S.R. Jia, Mesoporous phenylalanine ammonia lyase microspheres with improved stability through calcium carbonate templating, Int. J. Biol. Macromol. 98(2017) 887-896. [37] Y. Wang, C. Hou, Y. Zhang, F. He, M.Z. Liu, X.L. Li, Preparation of graphene nano-sheet bonded PDA/MOF microcapsules with immobilized glucose oxidase as a mimetic multi-enzyme system for electrochemical sensing of glucose, J. Mater. Chem. A 4(21) (2016) 3695-3702. [38] C. Yang, H. Wu, X. Yang, J.F. Shi, X.L. Wang, S.H. Zhang, Z.Y. Jiang, Coordinationenabled one-step assembly of ultrathin, hybrid microcapsules with weak pHresponse, ACS Appl. Mater. Interfaces 7(17) (2015) 9178-9184. [39] S.H. Zhang, Z.Y. Jiang, W.Y. Zhanga, X.L. Wang, J.F. Shi, Polymer-inorganic microcapsules fabricated by combining biomimetic adhesion and bioinspired mineralization and their use for catalase immobilization, Biochem. Eng. J. 93(2015) 281-288. [40] X.L. Wang, J.F. Shi, S.H. Zhang, H. Wu, Z.Y. Jiang, C. Yang, Y.X. Wang, L. Tang, A.F. Yan, MOF-templated rough, ultrathin inorganic microcapsules for enzyme immobilization, J. Mater. Chem. B 3(32) (2015) 6587-6598. [41] C. Hou, Y. Wang, H. Zhu, L.C. Zhou, Formulation of robust organic-inorganic hybrid magnetic microcapsules through hard-template mediated method for efficient enzyme immobilization, J. Mater. Chem. B 3(14) (2015) 2883-2891. [42] X.L. Wang, Z. Li, J.F. Shi, H. Wu, Z.Y. Jiang, W.Y. Zhang, X.K. Song, Q.H. Ai, Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction, ACS Catal. 4(3) (2014) 962-972. [43] J.F. Shi, C. Yang, S.H. Zhang, X.L. Wang, Z.Y. Jiang, W.Y. Zhang, X.K. Song, Q.H. Ai, C.Y. Tian, Polydopamine microcapsules with different wall structures prepared by a template-mediated method for enzyme immobilization, ACS Appl. Mater. Interfaces 5(20) (2013) 9991-9997. [44] Q. Xin, Y.J. Jiang, J. Gao, L.Y. Zhou, L. Ma, Y. He, F. Jia, Biomimetic preparation of organic-inorganic composite microcapsules for glucose oxidase immobilization, Chin. J. Catal. 34(8) (2013) 1627-1633. [45] L. Zhang, J.F. Shi, Z.Y. Jiang, Y.J. Jiang, R.J. Meng, Y.Y. Zhu, Y.P. Liang, Y. Zheng, Facile preparation of robust microcapsules by manipulating metal-coordination interaction between biomineral layer and bioadhesive layer, ACS Appl. Mater. Interfaces 3(2) (2011) 597-605. [46] J.J. Richardson, K. Liang, K. Kempe, H. Ejima, J. Cui, F. Caruso, Immersive polymer assembly on immobilized particles for automated capsule preparation, Adv. Mater. 25(47) (2013) 6874-6878. [47] Y.J. Jiang, L.T. Ma, L.Y. Zhou, L. Ma, Y. He, X. Zhang, J. Gao, Structured interlocked-microcapsules:a novel scaffold for enzyme immobilization, Catal. Commun. 88(2017) 35-38. [48] X.L. Wu, J. Ge, C. Yang, M. Hou, Z. Liu, Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment, Chem. Commun. 51(69) (2015) 13408-13411. [49] X.L. Wu, M. Hou, J. Ge, Metal-organic frameworks and inorganic nanoflowers:a type of emerging inorganic crystal nanocarrier for enzyme immobilization, Catal. Sci. Technol. 5(12) (2015) 5077-5085. [50] Y.F. Cao, X.Y. Li, J.R. Xiong, L.C. Wang, L.T. Yan, J. Ge, Investigating the origin of high efficiency in confined multienzyme catalysis, Nanoscale 11(45) (2019) 22108-22117. [51] X.L. Wu, H. Yue, Y.Y. Zhang, X.Y. Gao, X.Y. Li, L.C. Wang, Y.F. Cao, M. Hou, H.X. An, L. Zhang, S. Li, J.Y. Ma, H. Lin, Y.A. Fu, H.K. Gu, W.Y. Lou, W. Wei, R.N. Zare, J. Ge, Packaging and delivering enzymes by amorphous metal-organic frameworks, Nat. Commun. 10(2019) 5165. [52] C. Zhang, X.R. Wang, M. Hou, X.Y. Li, X.L. Wu, J. Ge, Immobilization on metal-organic framework engenders high sensitivity for enzymatic electrochemical detection, ACS Appl. Mater. Interfaces 9(16) (2017) 13831-13836. [53] Y. Li, L.Y. Wen, T.W. Tan, Y.Q. Lv, Sequential co-immobilization of enzymes in metalorganic frameworks for efficient biocatalytic conversion of adsorbed CO2 to formate, Front. Bioeng. Biotech. 7(2019) 394. [54] K.P. Cheng, F. Svec, Y.Q. Lv, T.W. Tan, Hierarchical micro- and mesoporous Zn-based metal-organic frameworks templated by hydrogels:their use for enzyme immobilization and catalysis of knoevenagel reaction, Small 15(44) (2019) 1902927. [55] S.J. Chen, L.Y. Wen, F. Svec, T.W. Tan, Y.Q. Lv, Magnetic metal-organic frameworks as scaffolds for spatial co-location and positional assembly of multi-enzyme systems enabling enhanced cascade biocatalysis, RSC Adv. 7(34) (2017) 21205-21213. [56] L.Y. Wen, A.C. Gao, Y. Cao, F. Svec, T.W. Tan, Y.Q. Lv, Layer-by-layer assembly of metal-organic frameworks in macroporous polymer monolith and their use for enzyme immobilization, Macromol. Rapid Commun. 37(6) (2016) 551-557. [57] J.Y. Liang, F. Mazur, C.Y. Tang, X.N. Ning, R. Chandrawati, K. Liang, Peptide-induced super-assembly of biocatalytic metal-organic frameworks for programmed enzyme cascades, Chem. Sci. 10(34) (2019) 7852-7858. [58] M. Mohammad, A. Razmjou, K. Liang, M. Asadnia, V. Chen, Metal-organic-framework-based enzymatic microfluidic biosensor via surface patterning and biomineralization, ACS Appl. Mater. Interfaces 11(2) (2019) 1807-1820. [59] C. Doonan, R. Ricco, K. Liang, D. Bradshaw, P. Falcaro, Metal-organic frameworks at the biointerface:synthetic strategies and applications, Acc. Chem. Res. 50(6) (2017) 1423-1432. [60] G.Y. Jeong, R. Ricco, K. Liang, J. Ludwig, J.O. Kim, P. Falcaro, D.P. Kim, Bioactive MIL-88A framework hollow spheres via interfacial reaction in-droplet microfluidics for enzyme and nanoparticle encapsulation, Chem. Mater. 27(23) (2015) 7903-7909. [61] X.Z. Lian, Y. Fang, E. Joseph, Q. Wang, J.L. Li, S. Banerjee, C. Lollar, X. Wang, H.C. Zhou, Enzyme-MOF (metal-organic framework) composites, Chem. Soc. Rev. 46(11) (2017) 3386-3401. [62] S. Liang, X.L. Wu, J. Xiong, M.H. Zong, W.Y. Lou, Metal-organic frameworks as novel matrices for efficient enzyme immobilization:An update review, Coord. Chem. Rev. 406(2020) 213149. [63] Y.B. Li, L.H. Wee, A. Volodin, J.A. Martens, I.F.J. Vankelecom, Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method, Chem. Commun. 51(5) (2015) 918-920. [64] F.M. Hinterholzinger, A. Ranft, J.M. Feckl, B. Ruhle, T. Bein, B.V. Lotsch, Onedimensional metal-organic framework photonic crystals used as platforms for vapor sorption, J. Mater. Chem. 22(20) (2012) 10356-10362. [65] Z. Zhang, J. Muschiol, Y. Huang, S.B. Sigurdardóttir, N. von Solms, A.E. Daugaard, J. Wei, J. Luo, B.-H. Xu, S. Zhang, M. Pinelo, Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol, Green Chem. 20(18) (2018) 4339-4348. [66] B. El-Zahab, D. Donnelly, P. Wang, Particle-tethered NADH for production of methanol from CO2 catalyzed by coimmobilized enzymes, Biotechnol. Bioeng. 99(3) (2008) 508-514. [67] D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, Fe-based MOFs for photocatalytic CO2 reduction:role of coordination unsaturated sites and dual excitation pathways, ACS Catal. 4(12) (2014) 4254-4260. [68] R. Obert, B.C. Dave, Enzymatic conversion of carbon dioxide to methanol:enhanced methanol production in silica sol-gel matrices, J. Am. Chem. Soc. 121(51) (1999) 12192-12193. [69] D. Zhu, S. Ao, H. Deng, M. Wang, C. Qin, J. Zhang, Y. Jia, P. Ye, H. Ni, Ordered coimmobilization of a multienzyme cascade system with a metal organic framework in a membrane:reduction of CO2 to methanol, ACS Appl. Mater. Interfaces 11(37) (2019) 33581-33588. [70] J. Shi, X. Wang, Z. Jiang, Y. Liang, Y. Zhu, C. Zhang, Constructing spatially separated multienzyme system through bioadhesion-assisted bio-inspired mineralization for efficient carbon dioxide conversion, Bioresour. Technol. 118(2012) 359-366. [71] Y. Jiang, Q. Sun, L. Zhang, Z. Jiang, Capsules-in-bead scaffold:A rational architecture for spatially separated multienzyme cascade system, J. Mater. Chem. 19(47) (2009) 9068-9074. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 160
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 250
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||