中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 121-135.DOI: 10.1016/j.cjche.2020.12.002
• Biocatalysis and Bioreactor Engineering • 上一篇 下一篇
Bekir Engin Eser1, Yan Zhang1, Li Zong1,2, Zheng Guo1
收稿日期:
2020-10-14
修回日期:
2020-12-07
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Zheng Guo
基金资助:
Bekir Engin Eser1, Yan Zhang1, Li Zong1,2, Zheng Guo1
Received:
2020-10-14
Revised:
2020-12-07
Online:
2021-02-28
Published:
2021-05-15
Contact:
Zheng Guo
Supported by:
摘要: Cytochrome P450s (CYPs) are ubiquitously found in all kingdoms of life, playing important role in various biosynthetic pathways as well as degradative pathways; accordingly find applications in a vast variety of areas from organic synthesis and drug metabolite production to modification of biomaterials and bioremediation. Significantly, CYPs catalyze chemically challenging C—H and C—C activation reactions using a reactive high-valent iron-oxo intermediate generated upon dioxygen activation at their heme center, while the other oxygen atom is reduced to the level of water by electrons provided through a reductase partner protein. Self-sufficient CYPs, encoding their heme domain and reductase protein in a single polypeptide, facilitate increased catalytic efficiency and render a less complicated system to work with. The self-sufficient CYP enzyme from CYP102A family (CYP102A1, BM3) is among the earliest and most-investigated model enzymes for mechanistic and structural studies as well as for biotechnological applications. An increasing number of self-sufficient CYPs from the same CYP102 family and from other families have also been reported in last decade. In this review, we introduce chemistry and biology of CYPs, followed by an overview of the characteristics of self-sufficient CYPs and representative reactions. Enzyme engineering efforts leading to novel self-sufficient CYP variants that can catalyze synthetically useful natural and non-natural (nature-mimicking) reactions are highlighted. Lastly, the strategy and efforts that aim to circumvent the challenges for improved thermostability, regio-and enantioselectivity, and total turnover number; associated with practical use of self-sufficient CYPs are reviewed.
Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology[J]. 中国化学工程学报, 2021, 29(2): 121-135.
Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 121-135.
[1] R.A. Sheldon, J.M. Woodley, Role of biocatalysis in sustainable chemistry, Chem. Rev. 118 (2018) 801–838. [2] U.T. Bornscheuer, The fourth wave of biocatalysis is approaching, Philos. Trans. Royal Soc. A 376 (2017) 20170063. [3] K. Chen, F.H. Arnold, Engineering new catalytic activities in enzymes, Nat. Catal. 3 (2020) 203–213. [4] D.R. Nelson, Cytochrome P450 diversity in the tree of life, Biochim. Biophys. Acta, Proteins Proteom. 1866 (2018) 141–154. [5] S. Notonier, M. Alexander, L.N. Jayakody, An overview of p450 enzymes: opportunity and challenges in industrial applications, Enz. Eng. 05 (3) (2016) 1000152. [6] R. Bernhardt, V.B. Urlacher, Cytochromes P450 as promising catalysts for biotechnological application: chances and limitations, Appl. Microbiol. Biotechnol. 98 (2014) 6185–6203. [7] S.L. Kelly, D.E. Kelly, Microbial cytochromes P450: biodiversity and biotechnology. Where do cytochromes P450 come from, what do they do and what can they do for us?, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368 (2013) 20120476. [8] X. Huang, J.T. Groves, Beyond ferryl-mediated hydroxylation: 40 years of the rebound mechanism and CH activation, J. Biol. Inorg. Chem. 22 (2017) 185–207. [9] J.T. Groves, Cytochrome P450 enzymes: understanding the biochemical hieroglyphs, F1000Research 4 (2015) 178. [10] D.C. Lamb, M.R. Waterman, Fifty years of cytochrome P450 research: Examples of what we know and do not know, in: H. Yamazaki (Ed.), Fifty Years of Cytochrome P450 Research, Springer Japan, Tokyo, 2014, pp. 43–71. [11] F.P. Guengerich, Cytochrome p450 research and the journal of biological chemistry, J. Biol. Chem. 294 (2019) 1671–1680. [12] F.P. Guengerich, New trends in cytochrome p450 research at the half-century mark, J. Biol. Chem. 288 (2013) 17063–17064. [13] V.B. Urlacher, M. Girhard, Cytochrome p450 monooxygenases in biotechnology and synthetic biology, Trends Biotechnol. 37 (2019) 882–897. [14] H.M.L. Davies, D. Morton, Collective approach to advancing CH functionalization, ACS Cent. Sci. 3 (2017) 936–943. [15] X. Huang, J.T. Groves, Oxygen activation and radical transformations in heme proteins and metalloporphyrins, Chem. Rev. 118 (2018) 2491–2553. [16] H.M. Davies, D. Morton, Recent advances in CH functionalization, J. Org. Chem. 81 (2016) 343–350. [17] R.K. Zhang, X. Huang, F.H. Arnold, Selective C H bond functionalization with engineered heme proteins: new tools to generate complexity, Curr. Opin. Chem. Biol. 49 (2019) 67–75. [18] L. Hammerer, C.K. Winkler, W. Kroutil, Regioselective biocatalytic hydroxylation of fatty acids by cytochrome P450s, Catal. Lett. 148 (2018) 787–812. [19] J. Reinen, J.S. van Leeuwen, Y. Li, L. Sun, P.D. Grootenhuis, C.J. Decker, J. Saunders, N.P. Vermeulen, J.N. Commandeur, Efficient screening of cytochrome P450 BM3 mutants for their metabolic activity and diversity toward a wide set of drug-like molecules in chemical space, Drug Metab. Dispos. 39 (2011) 1568–1576. [20] C.G. Acevedo-Rocha, C.G. Gamble, R. Lonsdale, A. Li, N. Nett, S. Hoebenreich, J. B. Lingnau, C. Wirtz, C. Fares, H. Hinrichs, A. Deege, A.J. Mulholland, Y. Nov, D. Leys, K.J. McLean, A.W. Munro, M.T. Reetz, P450-catalyzed regio-and diastereoselective steroid hydroxylation: efficient directed evolution enabled by mutability landscaping, ACS Catal. 8 (2018) 3395–3410. [21] X. Zhang, Y. Peng, J. Zhao, Q. Li, X. Yu, C.G. Acevedo-Rocha, A. Li, Bacterial cytochrome P450-catalyzed regio-and stereoselective steroid hydroxylation enabled by directed evolution and rational design, Bioresour. Bioprocess. 7 (2020) 2. [22] J. Manning, M. Tavanti, J.L. Porter, N. Kress, S.P. De Visser, N.J. Turner, S.L. Flitsch, Regio-and enantio-selective chemo-enzymatic CH-lactonization of decanoic acid to (S)-d-decalactone, Angew. Chem. Int. Ed. 58 (2019) 5668–5671. [23] K. Neufeld, B. Henßen, J. Pietruszka, Enantioselective allylic hydroxylation of x-alkenoic acids and esters by p450 bm3 monooxygenase, Angew. Chem. Int. Ed. 53 (2014) 13253–13257. [24] C.K. Prier, R.K. Zhang, A.R. Buller, S. Brinkmann-Chen, F.H. Arnold, Enantioselective, intermolecular benzylic CH amination catalysed by an engineered iron-haem enzyme, Nat. Chem. 9 (2017) 629–634. [25] F.P. Guengerich, Mechanisms of cytochrome P450-catalyzed oxidations, ACS Catal. 8 (2018) 10964–10976. [26] Z. Li, Y. Jiang, F.P. Guengerich, L. Ma, S. Li, W. Zhang, Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications, J. Biol. Chem. 295 (2020) 833–849. [27] P.R. Ortiz de Montellano, Hydrocarbon hydroxylation by cytochrome P450 enzymes, Chem. Rev. 110 (2010) 932–948. [28] Y. Wei, E.L. Ang, H. Zhao, Recent developments in the application of P450 based biocatalysts, Curr. Opin. Chem. Biol. 43 (2018) 1–7. [29] D. Sirim, F. Wagner, A. Lisitsa, J. Pleiss, The cytochrome P450 engineering database: Integration of biochemical properties, BMC Biochem. 10 (2009) 1–4. [30] D.W. Nebert, K. Wikvall, W.L. Miller, Human cytochromes P450 in health and disease, Philos. Trans. R. Soc. Lond., B, Biol. Sci. 368 (2013) 20120431. [31] J. Shin, J.-E. Kim, Y.-W. Lee, H. Son, Fungal cytochrome P450s and the P450 complement (CYPome) of Fusarium graminearum, Toxins 10 (2018) 112. [32] B. Črešnar, Š. Petrič, Cytochrome P450 enzymes in the fungal kingdom, Biochim. Biophys. Acta Proteins Proteom. 2011 (1814) 29–35. [33] M.-A. Cho, S. Han, Y.-R. Lim, V. Kim, H. Kim, D. Kim, Streptomyces cytochrome P450 enzymes and their roles in the biosynthesis of macrolide therapeutic agents, Biomol. Ther. (Seoul) 27 (2019) 127. [34] H.M. Girvan, A.W. Munro, Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology, Curr. Opin. Chem. Biol. 31 (2016) 136–145. [35] A.H. Follmer, S. Tripathi, T.L. Poulos, Ligand and redox partner binding generates a new conformational state in cytochrome P450cam (CYP101A1), J. Am. Chem. Soc. 141 (2019) 2678–2683. [36] A.H. Follmer, M. Mahomed, D.B. Goodin, T.L. Poulos, Substrate-dependent allosteric regulation in cytochrome P450cam (CYP101A1), J. Am. Chem. Soc. 140 (2018) 16222–16228. [37] S. Dezvarei, J.H. Lee, S.G. Bell, Stereoselective hydroxylation of isophorone by variants of the cytochromes P450 CYP102A1 and CYP101A1, Enzyme Microb. Technol. 111 (2018) 29–37. [38] C.J. Whitehouse, S.G. Bell, L.-L. Wong, P450 BM3 (CYP102A1): Connecting the dots, Chem. Soc. Rev. 41 (2012) 1218–1260. [39] G. Di Nardo, A. Fantuzzi, A. Sideri, P. Panicco, C. Sassone, C. Giunta, G. Gilardi, Wild-type CYP102A1 as a biocatalyst: turnover of drugs usually metabolised by human liver enzymes, J. Biol. Inorg. Chem. 12 (2007) 313–323. [40] L. Zhang, Z. Xie, Z. Liu, S. Zhou, L. Ma, W. Liu, J.W. Huang, T.P. Ko, X. Li, Y. Hu, J. Min, X. Yu, R.T. Guo, C.C. Chen, Structural insight into the electron transfer pathway of a self-sufficient P450 monooxygenase, Nat. Commun. 11 (2020) 2676. [41] S. Shaik, S. Cohen, Y. Wang, H. Chen, D. Kumar, W. Thiel, P450 enzymes: Their structure, reactivity, and selectivity—modeled by QM/MM calculations, Chem. Rev. 110 (2010) 949–1017. [42] B. Meunier, S.P. De Visser, S. Shaik, Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes, Chem. Rev. 104 (2004) 3947–3980. [43] I.G. Denisov, T.M. Makris, S.G. Sligar, I. Schlichting, Structure and chemistry of cytochrome P450, Chem. Rev. 105 (2005) 2253–2277. [44] J. Rittle, M.T. Green, Cytochrome P450 compound I: Capture, characterization, and CH bond activation kinetics, Science 330 (2010) 933–937. [45] C.M. Krest, E.L. Onderko, T.H. Yosca, J.C. Calixto, R.F. Karp, J. Livada, J. Rittle, M. T. Green, Reactive intermediates in cytochrome P450 catalysis, J. Biol. Chem. 288 (2013) 17074–17081. [46] C.H. Hsieh, X. Huang, J.A. Amaya, C.D. Rutland, C.L. Keys, J.T. Groves, R.N. Austin, T.M. Makris, The enigmatic P450 decarboxylase OleT is capable of, but evolved to frustrate, oxygen rebound chemistry, Biochemistry 56 (2017) 3347–3357. [47] J.-B. Wang, R. Lonsdale, M.T. Reetz, Exploring substrate scope and stereoselectivity of P450 peroxygenase OleT JE in olefin-forming oxidative decarboxylation, Chem. Commun. 52 (2016) 8131–8133. [48] D.R. Nelson, The cytochrome p450 homepage, Hum. Genomics 4 (2009) 59. [49] A. Ciaramella, D. Minerdi, G. Gilardi, Catalytically self-sufficient cytochromes P450 for green production of fine chemicals, Rend. Lincei Sci. Fis. Nat. 28 (2016) 169–181. [50] A.W. Munro, H.M. Girvan, K.J. McLean, Cytochrome P450–redox partner fusion enzymes, Biochim. Biophys. Acta Gen. Subj. 1770 (2007) 345–359. [51] F. Hannemann, A. Bichet, K.M. Ewen, R. Bernhardt, Cytochrome P450 systems—biological variations of electron transport chains, Biochim. Biophys. Acta Gen. Subj. 1770 (2007) 330–344. [52] L. Waskell, J.J.P. Kim, Electron transfer partners of cytochrome P450, in: P. Ortiz de Montellano (Ed.), Cytochrome P450, Springer, Cham, 2015, pp. 33–68. [53] L.P. Wen, A. Fulco, Cloning of the gene encoding a catalytically self-sufficient cytochrome P-450 fatty acid monooxygenase induced by barbiturates in Bacillus megaterium and its functional expression and regulation in heterologous (Escherichia coli) and homologous (Bacillus megaterium) hosts, J. Biol. Chem. 262 (1987) 6676–6682. [54] Y. Miura, A.J. Fulco, (x–2) hydroxylation of fatty acids by a soluble system from Bacillus megaterium, J. Biol. Chem. 249 (1974) 1880–1888. [55] A.J. Fulco, P450BM-3 and other inducible bacterial P450 cytochromes: biochemistry and regulation, Annu. Rev. Pharmacol. Toxicol. 31 (1991) 177–203. [56] Y. Miura, A.J. Fulco, x-1, x-2 and x-3 hydroxylation of long-chain fatty acids, amides and alcohols by a soluble enzyme system from Bacillus megaterium, Biochim. Biophys. Acta, Lipids Lipid Metab. 388 (1975) 305–317. [57] R.T. Ruettinger, A. Fulco, Epoxidation of unsaturated fatty acids by a soluble cytochrome P-450-dependent system from Bacillus megaterium, J. Biol. Chem. 256 (1981) 5728–5734. [58] J.A. Dietrich, Y. Yoshikuni, K.J. Fisher, F.X. Woolard, D. Ockey, D.J. McPhee, N.S. Renninger, M.C. Chang, D. Baker, J.D. Keasling, A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3, ACS Chem. Biol. 4 (2009) 261–267. [59] D. Cook, J. Finnigan, K. Cook, G. Black, S. Charnock, Cytochromes P450: history, classes, catalytic mechanism, and industrial application, Adv. Protein Chem. Struct. Biol. 105 (2016) 105–126. [60] S.T. Jung, R. Lauchli, F.H. Arnold, Cytochrome P450: Taming a wild type enzyme, Curr. Opin. Biotechnol. 22 (2011) 809–817. [61] M.C. Gustafsson, O. Roitel, K.R. Marshall, M.A. Noble, S.K. Chapman, A. Pessegueiro, A.J. Fulco, M.R. Cheesman, C. von Wachenfeldt, A.W. Munro, Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium, Biochemistry 43 (2004) 5474–5487. [62] P.K. Chowdhary, M. Alemseghed, D.C. Haines, Cloning, expression and characterization of a fast self-sufficient P450: CYP102A5 from Bacillus cereus, Arch. Biochem. Biophys. 468 (2007) 32–43. [63] M. Dietrich, S. Eiben, C. Asta, T.A. Do, J. Pleiss, V.B. Urlacher, Cloning, expression and characterisation of CYP102A7, a self-sufficient P450 monooxygenase from Bacillus licheniformis, Appl. Microbiol. Biotechnol. 79 (2008) 931–940. [64] K.Y. Choi, E. Jung, D.H. Jung, B.P. Pandey, H. Yun, H.y. Park, R.J. Kazlauskas, B.G. Kim, Cloning, expression and characterization of CYP102D1, a self-sufficient P450 monooxygenase from Streptomyces avermitilis, FEBS J. 279 (2012) 1650–1662. [65] S.D. Munday, N.K. Maddigan, R.J. Young, S.G. Bell, Characterisation of two selfsufficient CYP102 family monooxygenases from Ktedonobacter racemifer DSM44963 which have new fatty acid alcohol product profiles, Biochim. Biophys. Acta 2016 (1860) 1149–1162. [66] N.K. Maddigan, S.G. Bell, The self-sufficient CYP102 family enzyme, Krac9955, from Ktedonobacter racemifer DSM44963 acts as an alkyl-and alkyloxybenzoic acid hydroxylase, Arch. Biochem. Biophys. 615 (2017) 15–21. [67] J.L. Porter, J. Manning, S. Sabatini, M. Tavanti, N.J. Turner, S.L. Flitsch, Characterisation of CYP102A25 from Bacillus marmarensis and CYP102A26 from Pontibacillus halophilus: P450 homologues of BM3 with preference towards hydroxylation of medium-chain fatty acids, ChemBioChem 19 (2018) 513–520. [68] J. Kim, P.G. Lee, E.O. Jung, B.G. Kim, In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo, Biochim. Biophys. Acta, Proteins Proteom. 1866 (2018) 60–67. [69] H.J. Kim, S. Jang, J. Kim, Y.H. Yang, Y.G. Kim, B.G. Kim, K.Y. Choi, Biosynthesis of indigo in Escherichia coli expressing self-sufficient CYP102A from Streptomyces cattleya, Dyes Pigm. 140 (2017) 29–35. [70] L. Xie, K. Chen, H. Cui, N. Wan, B. Cui, W. Han, Y. Chen, Characterization of a self-sufficient cytochrome P450 monooxygenase from deinococcus apachensis for enantioselective benzylic hydroxylation, ChemBioChem 21 (2020) 1820–1825. [71] L. Zong, R. Gao, Z. Guo, Z. Shao, Y. Wang, B.E. Eser, Characterization and modification of two self-sufficient CYP102 family enzymes from Bacillus amyloliquefaciens DSM 7 with distinct regioselectivity towards fatty acid hydroxylation, Biochem. Eng. J. (2020) 107871. [72] S. Tunaru, R. Chennupati, R.M. Nusing, S. Offermanns, Arachidonic acid metabolite 19(S)-HETE induces vasorelaxation and platelet inhibition by activating prostacyclin (IP) receptor, PLoS One 11 (2016) e0163633. [73] R. De Mot, A.H. Parret, A novel class of self-sufficient cytochrome P450 monooxygenases in prokaryotes, Trends Microbiol. 10 (2002) 502–508. [74] G.A. Roberts, G. Grogan, A. Greter, S.L. Flitsch, N.J. Turner, Identification of a new class of cytochrome P450 from a Rhodococcus sp, J. Bacteriol. 184 (2002) 3898–3908. [75] L. Liu, R.D. Schmid, V.B. Urlacher, Cloning, expression, and characterization of a self-sufficient cytochrome P450 monooxygenase from Rhodococcus ruber DSM 44319, Appl. Microbiol. Biotechnol. 72 (2006) 876–882. [76] A. Çelik, G.A. Roberts, J.H. White, S.K. Chapman, N.J. Turner, S.L. Flitsch, Probing the substrate specificity of the catalytically self-sufficient cytochrome P450 RhF from a Rhodococcus sp, Chem. Commun. (2006) 4492–4494. [77] J.M. Klenk, B.A. Nebel, J.L. Porter, J.K. Kulig, S.A. Hussain, S.M. Richter, M. Tavanti, N.J. Turner, M.A. Hayes, B. Hauer, The self-sufficient P450 RhF expressed in a whole cell system selectively catalyses the 5-hydroxylation of diclofenac, Biotechnol. J. 12 (2017) 1600520. [78] A.J. Warman, J.W. Robinson, D. Luciakova, A.D. Lawrence, K.R. Marshall, M.J. Warren, M.R. Cheesman, S.E.J. Rigby, A.W. Munro, K.J. McLean, Characterization of Cupriavidus metallidurans CYP116B1 –A thiocarbamate herbicide oxygenating P450–phthalate dioxygenase reductase fusion protein, FEBS J. 279 (2012) 1675–1693. [79] Y.C. Yin, H.L. Yu, Z.J. Luan, R.J. Li, P.F. Ouyang, J. Liu, J.H. Xu, Unusually broad substrate profile of self-sufficient cytochrome P450 monooxygenase CYP116B4 from Labrenzia aggregata, ChemBioChem 15 (2014) 2443–2449. [80] D. Minerdi, S.J. Sadeghi, G. Di Nardo, F. Rua, S. Castrignanò, P. Allegra, G. Gilardi, CYP116B5: a new class VII catalytically self-sufficient cytochrome P 450 from A cinetobacter radioresistens that enables growth on alkanes, Mol. Microbiol. 95 (2015) 539–554. [81] A. Ciaramella, G. Catucci, G. Gilardi, G. Di Nardo, Crystal structure of bacterial CYP116B5 heme domain: new insights on class VII P450s structural flexibility and peroxygenase activity, Int. J. Biol. Macromol. 140 (2019) 577–587. [82] M. Tavanti, J.L. Porter, S. Sabatini, N.J. Turner, S.L. Flitsch, Panel of new thermostable CYP116B self-sufficient cytochrome P450 monooxygenases that catalyze CH activation with a diverse substrate scope, ChemCatChem 10 (2018) 1042–1051. [83] M. Tavanti, J.L. Porter, C.W. Levy, J.R.G. Castellanos, S.L. Flitsch, N.J. Turner, The crystal structure of P450-TT heme-domain provides the first structural insights into the versatile class VII P450s, Biochem. Biophys. Res. Commun. 501 (2018) 846–850. [84] J.L. Porter, S. Sabatini, J. Manning, M. Tavanti, J.L. Galman, N.J. Turner, S.L. Flitsch, Cloning, expression and characterisation of P450-Hal1 (CYP116B62) from Halomonas sp. NCIMB 172: a self-sufficient P450 with high expression and diverse substrate scope, Enzyme Microb. Technol. 113 (2018) 1–8. [85] N. Nakayama, A. Takemae, H. Shoun, Cytochrome P450foxy, a catalytically self-sufficient fatty acid hydroxylase of the fungus Fusarium oxysporum, J. Biol. Chem. 119 (1996) 435–440. [86] T. Kitazume, N. Takaya, N. Nakayama, H. Shoun, Fusarium oxysporum fattyacid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3, J. Biol. Chem. 275 (2000) 39734–39740. [87] R. Weis, M. Winkler, M. Schittmayer, S. Kambourakis, M. Vink, J.D. Rozzell, A. Glieder, A diversified library of bacterial and fungal bifunctional cytochrome P450 enzymes for drug metabolite synthesis, Adv. Synth. Catal. 351 (2009) 2140–2146. [88] J.-A. Seo, R.H. Proctor, R.D. Plattner, Characterization of four clustered and coregulated genes associated with fumonisin biosynthesis in Fusarium verticillioides, Fungal Genet. Biol. 34 (2001) 155–165. [89] A.K. Migglautsch, M. Willim, B. Schweda, A. Glieder, R. Breinbauer, M. Winkler, Aliphatic hydroxylation and epoxidation of capsaicin by cytochrome P450 CYP505X, Tetrahedron 74 (2018) 6199–6204. [90] C. Rinnofner, B. Kerschbaumer, H. Weber, A. Glieder, M. Winkler, Cytochrome P450 mediated hydroxylation of ibuprofen using Pichia pastoris as biocatalyst, Biocatal. Agric. Biotechnol. 17 (2019) 525–528. [91] G.J. Baker, H.M. Girvan, S. Matthews, K.J. McLean, M. Golovanova, T.N. Waltham, S.E. Rigby, D.R. Nelson, R.T. Blankley, A.W. Munro, Expression, purification, and biochemical characterization of the flavocytochrome P450 CYP505A30 from Myceliophthora thermophila, ACS Omega 2 (2017) 4705–4724. [92] M.J. Fürst, B. Kerschbaumer, C. Rinnofner, A.K. Migglautsch, M. Winkler, M.W. Fraaije, Exploring the biocatalytic potential of a self-sufficient cytochrome P450 from Thermothelomyces thermophila, Adv. Synth. Catal. 361 (2019) 2487–2496. [93] K. Sakai, F. Matsuzaki, L. Wise, Y. Sakai, S. Jindou, H. Ichinose, N. Takaya, M. Kato, H. Wariishi, M. Shimizu, Biochemical characterization of CYP505D6, a self-sufficient cytochrome P450 from the white-rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 84 (2018) e01091–18. [94] X. Song, H. Xiao, S. Luo, X. Wang, W. Wang, S. Lin, Biosynthesis of squalenetype triterpenoids in Saccharomyces cerevisiae by expression of CYP505D13 from Ganoderma lucidum, Bioresour. Bioprocess. 6 (2019) 19. [95] M.J. Maseme, A. Pennec, J. van Marwijk, D.J. Opperman, M.S. Smit, CYP505E3: A novel self-sufficient x-7 in-chain hydroxylase, Angew. Chem. Int. Ed. 59 (2020) 10359–10362. [96] M. Stumpe, I. Feussner, Formation of oxylipins by CYP74 enzymes, Phytochem. Rev. 5 (2006) 347–357. [97] N. Takaya, S. Suzuki, S. Kuwazaki, H. Shoun, F. Maruo, M. Yamaguchi, K. Takeo, Cytochrome P450nor, a novel class of mitochondrial cytochrome P450 involved in nitrate respiration in the fungus Fusarium oxysporum, Arch. Biochem. Biophys. 372 (1999) 340–346. [98] S. Garny, N. Beeton-Kempen, I. Gerber, J. Verschoor, J. Jordaan, The coimmobilization of P450-type nitric oxide reductase and glucose dehydrogenase for the continuous reduction of nitric oxide via cofactor recycling, Enzyme Microb. Technol. 85 (2016) 71–81. [99] S. Garny, J. Verschoor, N. Gardiner, J. Jordaan, Spectrophotometric activity microassay for pure and recombinant cytochrome P450-type nitric oxide reductase, Anal. Biochem. 447 (2014) 23–29. [100] M. Dietrich, T.A. Do, R.D. Schmid, J. Pleiss, V.B. Urlacher, Altering the regioselectivity of the subterminal fatty acid hydroxylase P450 BM-3 towards c-and d-positions, J. Biotechnol. 139 (2009) 115–117. [101] D.D. Zope, S.G. Patnekar, V.R. Kanetkar, Novel synthesis of flavour quality clactones, Flavour Frag. J. 21 (2006) 395–399. [102] F. Brühlmann, L. Fourage, C. Ullmann, O.P. Haefliger, N. Jeckelmann, C. Dubois, D. Wahler, Engineering cytochrome P450 BM3 of Bacillus megaterium for terminal oxidation of palmitic acid, J. Biotechnol. 184 (2014) 17–26. [103] A. Glieder, E.T. Farinas, F.H. Arnold, Laboratory evolution of a soluble, selfsufficient, highly active alkane hydroxylase, Nat. Biotechnol. 20 (2002) 1135–1139. [104] M.W. Peters, P. Meinhold, A. Glieder, F.H. Arnold, Regio-and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3, J. Am. Chem. Soc. 125 (2003) 13442–13450. [105] R. Fasan, Y.T. Meharenna, C.D. Snow, T.L. Poulos, F.H. Arnold, Evolutionary history of a specialized P450 propane monooxygenase, J. Mol. Biol. 383 (2008) 1069–1080. [106] P. Meinhold, M.W. Peters, M.M. Chen, K. Takahashi, F.H. Arnold, Direct conversion of ethane to ethanol by engineered cytochrome P450 BM3, ChemBioChem 6 (2005) 1765–1768. [107] E. Weber, A. Seifert, M. Antonovici, C. Geinitz, J. Pleiss, V.B. Urlacher, Screening of a minimal enriched P450 BM3 mutant library for hydroxylation of cyclic and acyclic alkanes, Chem. Commun. 47 (2011) 944–946. [108] P. Meinhold, M.W. Peters, A. Hartwick, A.R. Hernandez, F.H. Arnold, Engineering cytochrome P450 BM3 for terminal alkane hydroxylation, Adv. Synth. Catal. 348 (2006) 763–772. [109] J.Y. van der Meer, L. Biewenga, G.J. Poelarends, The generation and exploitation of protein mutability landscapes for enzyme engineering, ChemBioChem 17 (2016) 1792–1799. [110] T. Seng Wong, F.H. Arnold, U. Schwaneberg, Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic cosolvents, Biotechnol. Bioeng. 85 (2004) 351–358. [111] P.C. Cirino, F.H. Arnold, A self-sufficient peroxide-driven hydroxylation biocatalyst, Angew. Chem. Int. Ed. 42 (2003) 3299–3301. [112] O. Salazar, P.C. Cirino, F.H. Arnold, Thermostabilization of a cytochrome P450 peroxygenase, ChemBioChem 4 (2003) 891–893. [113] P.S. Coelho, E.M. Brustad, A. Kannan, F.H. Arnold, olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes, Science 339 (2013) 307–310. [114] O.F. Brandenberg, C.K. Prier, K. Chen, A.M. Knight, Z. Wu, F.H. Arnold, Stereoselective enzymatic synthesis of heteroatom-substituted cyclopropanes, ACS Catal. 8 (2018) 2629–2634. [115] P.S. Coelho, Z.J. Wang, M.E. Ener, S.A. Baril, A. Kannan, F.H. Arnold, E.M. Brustad, A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo, Nat. Chem. Biol. 9 (2013) 485–487. [116] Z.J. Wang, H. Renata, N.E. Peck, C.C. Farwell, P.S. Coelho, F.H. Arnold, Improved cyclopropanation activity of histidine-ligated cytochrome P450 enables the enantioselective formal synthesis of levomilnacipran, Angew. Chem. Int. Ed. 53 (2014) 6810–6813. [117] J.A. McIntosh, P.S. Coelho, C.C. Farwell, Z.J. Wang, J.C. Lewis, T.R. Brown, F.H. Arnold, Enantioselective intramolecular CH amination catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo, Angew. Chem. Int. Ed. 52 (2013) 9309–9312. [118] J. Zhang, X. Huang, R.K. Zhang, F.H. Arnold, Enantiodivergent alpha-amino CH fluoroalkylation catalyzed by engineered cytochrome P450s, J. Am. Chem. Soc. 141 (2019) 9798–9802. [119] S. Bahr, S. Brinkmann-Chen, M. Garcia-Borras, J.M. Roberts, D.E. Katsoulis, K. N. Houk, F.H. Arnold, Selective enzymatic oxidation of silanes to silanols, Angew. Chem. Int. Ed. Engl. 59 (2020) 15507–15511. [120] M.B. Murataliev, L.N. Trinh, L.V. Moser, R.B. Bates, R. Feyereisen, F.A. Walker, Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73–84 with the homologous residues from the insect cytochrome P450 CYP4C7, Biochemistry 43 (2004) 1771–1780. [121] C.K.J. Chen, R.E. Berry, T.K. Shokhireva, M.B. Murataliev, H. Zhang, F.A. Walker, Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene xhydroxylase CYP4C7, J. Biol. Inorg. Chem. 15 (2010) 159–174. [122] C.K.J. Chen, T.K. Shokhireva, R.E. Berry, H. Zhang, F.A. Walker, The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity, J. Biol. Inorg. Chem. 13 (2008) 813–824. [123] M.M. Yore, I. Syed, P.M. Moraes-Vieira, T. Zhang, M.A. Herman, E.A. Homan, R. T. Patel, J. Lee, S. Chen, O.D. Peroni, A.S. Dhaneshwar, A. Hammarstedt, U. Smith, T.E. McGraw, A. Saghatelian, B.B. Kahn, Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects, Cell 159 (2014) 318–332. [124] K.J. McLean, M. Hans, B. Meijrink, W.B. van Scheppingen, A. Vollebregt, K.L. Tee, J.M. van der Laan, D. Leys, A.W. Munro, M.A. van den Berg, Single-step fermentative production of the cholesterol-lowering drug pravastatin via reprogramming of Penicillium chrysogenum, Proc. Natl. Acad. Sci. U.S.A. 112 (2015) 2847–2852. [125] R.A. Sheldon, P.C. Pereira, Biocatalysis engineering: The big picture, Chem. Soc. Rev. 46 (2017) 2678–2691. [126] K. Zorn, I. Oroz-Guinea, H. Brundiek, U.T. Bornscheuer, Engineering and application of enzymes for lipid modification, an update, Prog. Lipid Res. 63 (2016) 153–164. [127] V.B. Urlacher, S. Lutz-Wahl, R.D. Schmid, Microbial P450 enzymes in biotechnology, Appl. Microbiol. Biotechnol. 64 (2004) 317–325. [128] H. Renault, J.E. Bassard, B. Hamberger, D. Werck-Reichhart, Cytochrome P450-mediated metabolic engineering: current progress and future challenges, Curr. Opin. Plant Biol. 19 (2014) 27–34. [129] A. Wlodarczyk, T. Gnanasekaran, A.Z. Nielsen, N.N. Zulu, S.B. Mellor, M. Luckner, J.F.B. Thøfner, C.E. Olsen, M.S. Mottawie, M. Burow, M. Pribil, I. Feussner, B.L. Møller, P.E. Jensen, Metabolic engineering of light-driven cytochrome P450 dependent pathways into Synechocystis sp. PCC 6803, Metab. Eng. 33 (2016) 1–11. [130] E. Leonard, Y. Yan, M.A.G. Koffas, Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli, Metab. Eng. 8 (2006) 172–181. [131] V.B. Urlacher, S. Schulz, Multi-enzyme systems and cascade reactions involving cytochrome P450 monooxygenases, In: Cascade Biocatalysis, S. Riva, W.D. Fessner, eds., wiley-vch veriag GmbH & Co. KGaA, New Jersey, 2014, pp. 87–132. [132] J.W. Song, J.-H. Seo, D.-K. Oh, U.T. Bornscheuer, J.-B. Park, Design and engineering of whole-cell biocatalytic cascades for the valorization of fatty acids, Catal. Sci. Technol. 10 (2020) 46–64. [133] R.J. Li, Z. Zhang, C.G. Acevedo-Rocha, J. Zhao, A. Li, Biosynthesis of organic molecules via artificial cascade reactions based on cytochrome P450 monooxygenases, Green Synt. Catal. 1 (2020) 52–59. [134] L. Fernández-Arrojo, M.-E. Guazzaroni, N. López-Cortés, A. Beloqui, M. Ferrer, Metagenomic era for biocatalyst identification, Curr. Opin. Biotechnol. 21 (2010) 725–733. [135] G.M. Simon, B.F. Cravatt, Activity-based proteomics of enzyme superfamilies: serine hydrolases as a case study, J. Biol. Chem. 285 (2010) 11051–11055. [136] S. Siedler, S. Bringer, M. Bott, Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation, Appl. Microbiol. Biotechnol. 92 (2011) 929–937. [137] W. Liu, P. Wang, Cofactor regeneration for sustainable enzymatic biosynthesis, Biotechnol. Adv. 25 (2007) 369–384. [138] H. Zhao, W.A. Van Der Donk, Regeneration of cofactors for use in biocatalysis, Curr. Opin. Biotechnol. 14 (2003) 583–589. [139] J.M. Vrtis, A.K. White, W.W. Metcalf, W.A. van der Donk, Phosphite dehydrogenase: A versatile cofactor-regeneration enzyme, Angew. Chem. Int. Ed. 41 (2002) 3257–3259. [140] H. Schewe, B.-A. Kaup, J. Schrader, Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli, Appl. Microbiol. Biotechnol. 78 (2008) 55–65. [141] J. Solé, G. Caminal, M. Schürmann, G. Álvaro, M. Guillén, Co-immobilization of P450 BM3 and glucose dehydrogenase on different supports for application as a self-sufficient oxidative biocatalyst, J. Chem. Technol. Biotechnol. 94 (2019) 244–255. [142] N. Beyer, J.K. Kulig, A. Bartsch, M.A. Hayes, D.B. Janssen, M.W. Fraaije, P450 (BM3) fused to phosphite dehydrogenase allows phosphite-driven selective oxidations, Appl. Microbiol. Biotechnol. 101 (2017) 2319–2331. [143] C. Rodriguez, I. Lavandera, V. Gotor, Recent advances in cofactor regeneration systems applied to biocatalyzed oxidative processes, Curr. Org. Chem. 16 (2012) 2525–2541. [144] L. Betancor, C. Berne, H.R. Luckarift, J.C. Spain, Coimmobilization of a redox enzyme and a cofactor regeneration system, Chem. Commun. 3640–3642 (2006). [145] C.R. Otey, G. Bandara, J. Lalonde, K. Takahashi, F.H. Arnold, Preparation of human metabolites of propranolol using laboratory-evolved bacterial cytochromes P450, Biotechnol. Bioeng. 93 (2006) 494–499. [146] M. Pickl, S. Kurakin, F.G. Cantú Reinhard, P. Schmid, A. Pöcheim, C.K. Winkler, W. Kroutil, S.P. de Visser, K. Faber, Mechanistic studies of fatty acid activation by CYP152 peroxygenases reveal unexpected desaturase activity, ACS Catal. 9 (2019) 565–577. [147] A.W. Munro, K.J. McLean, J.L. Grant, T.M. Makris, Structure and function of the cytochrome P450 peroxygenase enzymes, Biochem. Soc. Trans. 46 (2018) 183–196. [148] M.E. Albertolle, F. Peter Guengerich, The relationships between cytochromes P450 and H2O2: Production, reaction, and inhibition, J. Inorg. Biochem. 186 (2018) 228–234. [149] C.E. Paul, E. Churakova, E. Maurits, M. Girhard, V.B. Urlacher, F. Hollmann, In situ formation of H2O2 for P450 peroxygenases, Biorg. Med. Chem. 22 (2014) 5692–5696. [150] C.R. Otey, M. Landwehr, J.B. Endelman, K. Hiraga, J.D. Bloom, F.H. Arnold, Structure-guided recombination creates an artificial family of cytochromes P450, PLoS Biol. 4 (2006) e112. [151] N. Ma, Z. Chen, J. Chen, J. Chen, C. Wang, H. Zhou, L. Yao, O. Shoji, Y. Watanabe, Z. Cong, Dual-functional small molecules for generating an efficient cytochrome P450BM3 peroxygenase, Angew. Chem. Int. Ed. 57 (2018) 7628–7633. [152] J. Chen, F. Kong, N. Ma, P. Zhao, C. Liu, X. Wang, Z. Cong, Peroxide-driven hydroxylation of small alkanes catalyzed by an artificial P450BM3 peroxygenase system, ACS Catal. 9 (2019) 7350–7355. [153] Y. Jiang, C. Wang, N. Ma, J. Chen, C. Liu, F. Wang, J. Xu, Z. Cong, Regioselective aromatic O-demethylation with an artificial P450BM3 peroxygenase system, Catal. Sci. Technol. 10 (2020) 1219–1223. [154] A. Ciaramella, G. Catucci, G. Di Nardo, S.J. Sadeghi, G. Gilardi, Peroxide-driven catalysis of the heme domain of A. radioresistens cytochrome P450 116B5 for sustainable aromatic rings oxidation and drug metabolites production, N. Biotechnol. 54 (2020) 71–79. [155] T. Knaus, C.E. Paul, C.W. Levy, S. de Vries, F.G. Mutti, F. Hollmann, N.S. Scrutton, Better than nature: Nicotinamide biomimetics that outperform natural coenzymes, J. Am. Chem. Soc. 138 (2016) 1033–1039. [156] A. Guarneri, A.H. Westphal, J. Leertouwer, J. Lunsonga, M.C.R. Franssen, D.J. Opperman, F. Hollmann, W.J.H. van Berkel, C.E. Paul, Flavoenzyme-mediated regioselective aromatic hydroxylation with coenzyme biomimetics, ChemCatChem 12 (2020) 1368–1375. [157] A. Geddes, C.E. Paul, S. Hay, F. Hollmann, N.S. Scrutton, Donor–acceptor distance sampling enhances the performance of “better than nature” nicotinamide coenzyme biomimetics, J. Am. Chem. Soc. 138 (2016) 11089–11092. [158] J.D. Ryan, R.H. Fish, D.S. Clark, Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors, ChemBioChem 9 (2008) 2579–2582. [159] Q. Lam, M. Kato, L. Cheruzel, Ru(II)-diimine functionalized metalloproteins: From electron transfer studies to light-driven biocatalysis, Biochim. Biophys. Acta 2016 (1857) 589–597. [160] C. Eidenschenk, L. Cheruzel, Ru(II)-diimine complexes and cytochrome P450 working hand-in-hand, J. Inorg. Biochem. 213 (2020) 111254. [161] R.K. Bains, J.J. Miller, H.K. van der Roest, S. Qu, B. Lute, J.J. Warren, Lightactivated electron transfer and turnover in Ru-modified aldehyde deformylating oxygenases, Inorg. Chem. 57 (2018) 8211–8217. [162] E.H. Edwards, K.L. Bren, Light-driven catalysis with engineered enzymes and biomimetic systems, Biotechnol. Appl. Biochem. 67 (2020) 463–483. [163] N.-H. Tran, D. Nguyen, S. Dwaraknath, S. Mahadevan, G. Chavez, A. Nguyen, T. Dao, S. Mullen, T.-A. Nguyen, L.E. Cheruzel, An efficient light-driven P450 BM3 biocatalyst, J. Am. Chem. Soc. 135 (2013) 14484–14487. [164] J. Spradlin, D. Lee, S. Mahadevan, M. Mahomed, L. Tang, Q. Lam, A. Colbert, O. S. Shafaat, D. Goodin, M. Kloos, M. Kato, L.E. Cheruzel, Insights into an efficient light-driven hybrid P450 BM3 enzyme from crystallographic, spectroscopic and biochemical studies, Biochim. Biophys. Acta 2016 (1864) 1732–1738. [165] J.H. Park, S.H. Lee, G.S. Cha, D.S. Choi, D.H. Nam, J.H. Lee, J.K. Lee, C.H. Yun, K.J. Jeong, C.B. Park, cofactor-free light-driven whole-cell cytochrome P450 catalysis, Angew. Chem. Int. Ed. 54 (2015) 969–973. [166] M.B. Buergler, A. Dennig, B. Nidetzky, Process intensification for cytochrome P450 BM3-catalyzed oxy-functionalization of dodecanoic acid, Biotechnol. Bioeng. 117 (2020) 2377–2388. [167] S. Mazurenko, Z. Prokop, J. Damborsky, Machine learning in enzyme engineering, ACS Catal. 10 (2019) 1210–1223. [168] K.K. Yang, Z. Wu, C.N. Bedbrook, F.H. Arnold, Learned protein embeddings for machine learning, Bioinformatics 34 (2018) 2642–2648. [169] K.K. Yang, Z. Wu, F.H. Arnold, Machine-learning-guided directed evolution for protein engineering, Nat. Methods 16 (2019) 687–694. [170] Z. Wu, S.B.J. Kan, R.D. Lewis, B.J. Wittmann, F.H. Arnold, Machine learningassisted directed protein evolution with combinatorial libraries, Proc. Natl. Acad. Sci. 116 (2019) 8852–8858. [171] G. Li, Y. Dong, M.T. Reetz, Can Machine Learning Revolutionize Directed Evolution of Selective Enzymes?, Adv. Synth. Catal. 361 (2019) 2377–2386. [172] F. Cadet, N. Fontaine, G. Li, J. Sanchis, M. Ng Fuk Chong, R. Pandjaitan, I. Vetrivel, B. Offmann, M.T. Reetz, A machine learning approach for reliable prediction of amino acid interactions and its application in the directed evolution of enantioselective enzymes, Sci. Rep. 8 (2018) 16757. [173] M. Šícho, C. de Bruyn Kops, C. Stork, D. Svozil, J. Kirchmair, FAME 2: Simple and effective machine learning model of cytochrome P450 regioselectivity, J. Chem. Inf. Model. 57 (2017) 1832–1846. [174] P.A. Romero, A. Krause, F.H. Arnold, Navigating the protein fitness landscape with Gaussian processes, Proc. Natl. Acad. Sci. 110 (2013) E193–E201. [175] D. Heckmann, C.J. Lloyd, N. Mih, Y. Ha, D.C. Zielinski, Z.B. Haiman, A.A. Desouki, M.J. Lercher, B.O. Palsson, Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models, Nat. Commun. 9 (2018) 5252. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||