中国化学工程学报 ›› 2020, Vol. 28 ›› Issue (10): 2499-2506.DOI: 10.1016/j.cjche.2020.06.040
• Reviews • 下一篇
Zheyu Wang1, Yupei Jian1, Yilei Han1, Zhongwang Fu1, Diannan Lu1, Jianzhong Wu2, Zheng Liu1
收稿日期:
2020-04-15
修回日期:
2020-06-03
出版日期:
2020-10-28
发布日期:
2020-12-03
通讯作者:
Jianzhong Wu, Zheng Liu
Zheyu Wang1, Yupei Jian1, Yilei Han1, Zhongwang Fu1, Diannan Lu1, Jianzhong Wu2, Zheng Liu1
Received:
2020-04-15
Revised:
2020-06-03
Online:
2020-10-28
Published:
2020-12-03
Contact:
Jianzhong Wu, Zheng Liu
摘要: Enzymatic reactions take place with high chemo-, regio-, and stereo-selectivity, appealing for the direct functionalization of abundant and inexpensive compounds with C-H bonds to make fine chemicals such as high-value intermediates and pharmaceuticals. This review summarizes recent progress in the enzymatic functionalization of C-H bonds with an emphasis on heme enzymes such as cytochrome P450s, chloroperoxidase and unspecific peroxygenases. Specific examples are discussed to elucidate the applications of the molecular and process engineering approaches to overcome the challenges hindering enzymatic C-H functionalization. Also discussed is the recent development of the chemo-enzymatic cascade as an effective way to integrate the power of metal catalysis and enzymatic catalysis for C-H functionalization.
Zheyu Wang, Yupei Jian, Yilei Han, Zhongwang Fu, Diannan Lu, Jianzhong Wu, Zheng Liu. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals[J]. 中国化学工程学报, 2020, 28(10): 2499-2506.
Zheyu Wang, Yupei Jian, Yilei Han, Zhongwang Fu, Diannan Lu, Jianzhong Wu, Zheng Liu. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals[J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2499-2506.
[1] X.J. Cui, H.B. Li, Y. Wang, Y.L. Hu, L. Hua, H.Y. Li, X.W. Han, Q.F. Liu, F. Yang, L.M. He, X.Q. Chen, Q.Y. Li, J.P. Xiao, D.H. Deng, X.H. Bao, Room-temperature methane conversion by graphene-confined single iron atoms, Chem 4(8) (2018) 1902-1910. [2] B. Moden, B.Z. Zhan, J. Dakka, J.G. Santiesteban, E. Iglesia, Kinetics and mechanism of cyclohexane oxidation on MnAPO-5 catalysts, J. Catal. 239(2) (2006) 390-401. [3] K.B. Feng, R.E. Quevedo, J.T. Kohrt, M.S. Oderinde, U. Reilly, M.C. White, Late-stage oxidative C(sp3)-H methylation, Nature 580(7805) (2020) 621-627. [4] Y.B. Liu, H.B. Ge, Site-selective C-H arylation of primary aliphatic amines enabled by a catalytic transient directing group, Nat. Chem. 9(1) (2017) 26-32. [5] M. Conte, X. Liu, D.M. Murphy, K. Whiston, G.J. Hutchings, Cyclohexane oxidation using Au/MgO:an investigation of the reaction mechanism, Phys. Chem. Chem. Phys. 14(47) (2012) 16279-16285. [6] P.R.O. de Montellano, Hydrocarbon hydroxylation by cytochrome P450 enzymes, Chem. Rev. 110(2) (2010) 932-948. [7] J.C. Lewis, P.S. Coelho, F.H. Arnold, Enzymatic functionalization of carbon-hydrogen bonds, Chem. Soc. Rev. 40(4) (2011) 2003-2021. [8] F.Z. Li, X. Zhang, H. Renata, Enzymatic C-H functionalizations for natural product synthesis, Curr. Opin. Chem. Biol. 49(2019) 25-32. [9] R.J.K. Zhang, X.Y. Huang, F.H. Arnold, Selective C-H bond functionalization with engineered heme proteins:new tools to generate complexity, Curr. Opin. Chem. Biol. 49(2019) 67-75. [10] M.R. Bauerle, E.L. Schwalm, S.J. Booker, Mechanistic diversity of radical SAdenosylmethionine (SAM)-dependent methylation, J. Biol. Chem. 290(7) (2015) 3995-4002. [11] M.I. McLaughlin, W.A. van der Donk, Stereospecific radical-mediated B-12-dependent methyl transfer by the fosfomycin biosynthesis enzyme Fom3, Biochemistry 57(33) (2018) 4967-4971. [12] F.P. Guengerich, Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity, Chem. Res. Toxicol. 14(6) (2001) 611-650. [13] X.G. Zhou, X.Q. Yu, J.S. Huang, C.M. Che, Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins, Chem. Commun. (23) (1999) 2377-2378. [14] C.K. Prier, R.J.K. Zhang, A.R. Buller, S.B. Chen, F.H. Arnold, Enantioselective, intermolecular benzylic C-H amination catalysed by an engineered iron-haem enzyme, Nat. Chem. 9(7) (2017) 629-634. [15] F.E. Zilly, J.P. Acevedo, W. Augustyniak, A. Deege, U.W. Häusig, M.T. Reetz, Tuning a P450 Enzyme for Methane Oxidation, Angew. Chem., Int. Ed. 50(12) (2011) 2720-2724. [16] M.W. Peters, P. Meinhold, A. Glieder, F.H. Arnold, Regio-and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3, J. Am. Chem. Soc. 125(44) (2003) 13442-13450. [17] S. Kille, F.E. Zilly, J.P. Acevedo, M.T. Reetz, Regio-and stereoselectivity of P450-catalysed hydroxylation of steroids controlled by laboratory evolution, Nat. Chem. 3(9) (2011) 738-743. [18] K. Hayashi, K. Yasuda, H. Sugimoto, S. Ikushiro, M. Kamakura, A. Kittaka, R.L. Horst, T.C. Chen, M. Ohta, Y. Shiro, T. Sakaki, Three-step hydroxylation of vitamin D-3 by a genetically engineered CYP105A1, FEBS J. 277(19) (2010) 3999-4009. [19] K. Neufeld, B. Henssen, J. Pietruszka, Enantioselective Allylic Hydroxylation of omega-Alkenoic Acids and Esters by P450 BM3 Monooxygenase, Angew. Chem. Int. Ed. 53(48) (2014) 13253-13257. [20] A.M. Klibanov, Z. Berman, B.N. Alberti, Preparative hydroxylation of aromatic-compounds catalyzed by peroxidase, J. Am. Chem. Soc. 103(20) (1981) 6263-6264. [21] A. Zaks, D.R. Dodds, Chloroperoxidase-catalyzed asymmetric oxidations substratespecificity and mechanistic study, J. Am. Chem. Soc. 117(42) (1995) 10419-10424. [22] R.J.K. Zhang, K. Chen, X.Y. Huang, L. Wohlschlager, H. Renata, F.H. Arnold, Enzymatic assembly of carbon-carbon bonds via iron-catalysed sp3 C-H functionalization, Nature 565(7737) (2019) 67-72. [23] P. Dydio, H.M. Key, A. Nazarenko, J.Y.E. Rha, V. Seyedkazemi, D.S. Clark, J.F. Hartwig, An artificial metalloenzyme with the kinetics of native enzymes, Science 354(6308) (2016) 102-106. [24] L.S. Mazzaferro, W. Hüttel, A. Fries, M. Müller, Cytochrome P450-catalyzed regioand stereoselective phenol coupling of fungal natural products, J. Am. Chem. Soc. 137(38) (2015) 12289-12295. [25] A. Gesell, M. Rolf, J. Ziegler, M.L.D. Chávez, F.C. Huang, T.M. Kutchan, CYP719B1 is Salutaridine synthase, the C-C phenol-coupling enzyme of morphine biosynthesis in opium poppy, J. Biol. Chem. 284(36) (2009) 24432-24442. [26] M. Sridhar, S.K. Vadivel, U.T. Bhalerao, Novel horseradish peroxidase catalysed enantioselective oxidation of 2-naphthols to 1,1'-binaphthyl-2,2'-diols, Tetrahedron Lett. 38(32) (1997) 5695-5696. [27] T. Kiso, M. Shizuma, H. Murakami, T. Kiryu, K. Hozono, T. Terai, H. Nakano, Oxidative coupling reaction of arbutin and gentisate catalyzed by horseradish peroxidase, J. Mol. Catal. B Enzym. 45(1-2) (2007) 50-56. [28] J.A. McIntosh, P.S. Coelho, C.C. Farwell, Z.J. Wang, J.C. Lewis, T.R. Brown, F.H. Arnold, Enantioselective Intramolecular C-H Amination Catalyzed by Engineered Cytochrome P450 Enzymes In Vitro and In Vivo, Angew. Chem. Int. Ed. 52(35) (2013) 9309-9312. [29] M.C.R. Franssen, H.C. van der Plas, The chlorination of barbituric-acid and some of its derivatives by chloroperoxidase, Bioorg. Chem. 15(1) (1987) 59-70. [30] X. Ke, G.J. Ding, J. Sun, L. Wang, Y.G. Zheng, Vitamin D 3 Hydroxylase and Its Electronic Transfer Chain in vitro Construction and Activity Analysis, China Biotechnol. 36(5) (2016) 89-96. [31] X.W. Zhang, S.Y. Li, Expansion of chemical space for natural products by uncommon P450 reactions, Nat. Prod. Rep. 34(9) (2017) 1061-1089. [32] R.H. Crabtree, Aspects of methane chemistry, Chem. Rev. 95(4) (1995) 987-1007. [33] B.G. Fox, W.A. Froland, D.R. Jollie, J.D. Lipscomb, Methane monooxygenase from methylosinus-trichosporium ob3b, Methods Enzymol. 188(1990) 191-202. [34] F. Xu, S.G. Bell, J. Lednik, A. Insley, Z.H. Rao, L.L. Wong, The heme monooxygenase cytochrome P450(cam) can be engineered to oxidize ethane to ethanol, Angew. Chem. Int. Ed. 44(26) (2005) 4029-4032. [35] M.M. Chen, P.S. Coelho, F.H. Arnold, Utilizing terminal oxidants to achieve P450-catalyzed oxidation of methane, Adv. Synth. Catal. 354(6) (2012) 964-968. [36] S. Mordhorst, J. Siegrist, M. Müller, M. Richter, J.N. Andexer, Catalytic Alkylation Using a Cyclic S-Adenosylmethionine Regeneration System, Angew. Chem. Int. Ed. 56(14) (2017) 4037-4041. [37] H. Stecher, M. Tengg, B.J. Ueberbacher, P. Remler, H. Schwab, H. Griengl, M.G. Khadjawi, Biocatalytic Friedel-Crafts Alkylation Using Non-natural Cofactors, Angew. Chem. Int. Ed. 48(50) (2009) 9546-9548. [38] C. Sommer-Kamann, A. Fries, S. Mordhorst, J.N. Andexer, M. Müller, Asymmetric Calkylation by the S-Adenosylmethionine-dependent Methyltransferase SgvM, Angew. Chem. 129(14) (2017) 4091-4094. [39] O.F. Brandenberg, K. Chen, F.H. Arnold, Directed evolution of a cytochrome P450 carbene transferase for selective functionalization of cyclic compounds, J. Am. Chem. Soc. 141(22) (2019) 8989-8995. [40] A.R. Krawczyk, E. Lipkowska, J.T. Wrobel, Horseradish peroxidase-mediated preparation of dimers from eugenol and isoeugenol, Collect. Czechoslov. Chem. Commun. 56(5) (1991) 1147-1150. [41] F. Lee, J.E. Chung, K.M. Xu, M. Kurisawa, Injectable degradation-resistant hyaluronic acid hydrogels cross-linked via the oxidative coupling of green tea catechin, ACS Macro Lett. 4(9) (2015) 957-960. [42] T.K. Hyster, C.C. Farwell, A.R. Buller, J.A. McIntosh, F.H. Arnold, Enzyme-controlled nitrogen-atom transfer enables regiodivergent C-H amination, J. Am. Chem. Soc. 136(44) (2014) 15505-15508. [43] P. Dydio, H.M. Key, H. Hayashi, D.S. Clark, J.F. Hartwig, Chemoselective, enzymatic C-H bond amination catalyzed by a cytochrome P450 containing an Ir(Me)-PIX cofactor, J. Am. Chem. Soc. 139(5) (2017) 1750-1753. [44] A. But, A. van Noord, F. Poletto, J.P.M. Sanders, M.C.R. Franssen, E.L. Scott, Enzymatic halogenation and oxidation using an alcohol oxidase-vanadium chloroperoxidase cascade, Mol. Catal. 443(2017) 92-100. [45] N. Itoh, Y. Izumi, H. Yamada, Haloperoxidase-catalyzed halogenation of nitrogencontaining aromatic heterocycles represented by nucleic bases, Biochemistry 26(1) (1987) 282-289. [46] J.H. Medina, H. Viola, C. Wolfman, M. Marder, C. Wasowski, D. Calvo, A.C. Paladini, Overview-flavonoids:a new family of benzodiazepine receptor ligands, Neurochem. Res. 22(4) (1997) 419-425. [47] P. Yaipakdee, L.W. Robertson, Enzymatic halogenation of flavanones and flavones, Phytochemistry 57(3) (2001) 341-347. [48] L. Getrey, T. Krieg, F. Hollmann, J. Schrader, D. Holtmann, Enzymatic halogenation of the phenolic monoterpenes thymol and carvacrol with chloroperoxidase, Green Chem. 16(3) (2014) 1104-1108. [49] C. de Carvalho, Enzymatic and whole cell catalysis:finding new strategies for old processes, Biotechnol. Adv. 29(1) (2011) 75-83. [50] L.K. Hanson, S.G. Sligar, I.C. Gunsalus, Electronic-structure of cytochrome-P450, Croat. Chem. Acta 49(2) (1977) 237-250. [51] W. Zhang, Y. Liu, J.Y. Yan, S.N. Cao, F.L. Bai, Y. Yang, S.H. Huang, L.S. Yao, Y. Anzai, F. Kato, L.M. Podust, D.H. Sherman, S.Y. Li, New reactions and products resulting from alternative interactions between the P450 enzyme and redox partners, J. Am. Chem. Soc. 136(9) (2014) 3640-3646. [52] G.K.Khor,M.H.Uzir,Saccharomycescerevisiae:apotentialstereospecificreductiontool for biotransformation of mono-and sesquiterpenoids, Yeast 28(2) (2011) 93-107. [53] Z.Y. Zhang, F. Li, Y.X. Cao, Y. Tian, J.S. Li, Y.C. Zong, H. Song, Electricity-driven 7 alpha-hydroxylation of a steroid catalyzed by a cytochrome P450 monooxygenase in engineered yeast, Catal. Sci. Technol. 9(18) (2019) 4877-4887. [54] C.M. Hull, A.G.S. Warrilow, N.J. Rolley, C.L. Price, I.S. Donnison, D.E. Kelly, S.L. Kelly, Co-production of 11 alpha-hydroxyprogesterone and ethanol using recombinant yeast expressing fungal steroid hydroxylases, Biotechnol. Biofuels 10(2017) 13. [55] W.Adam,M.Lazarus,C.R.Saha-Möller,O.Weichold,U.Hoch,D.Häring,P.Schreier,Biotransformations with peroxidases, Adv. Biochem. Eng. Biotechnol. 63(1999) 73-108. [56] Y. Yang, I. Cho, X.T. Qi, P. Liu, F.H. Arnold, An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp3)-H bonds, Nat. Chem. 11(11) (2019) 987-993. [57] P.C. Wang, X.W. Yang, B.X. Lin, J.Z. Huang, Y. Tao, Cofactor self-sufficient whole-cell biocatalysts for the production of 2-phenylethanol, Metab. Eng. 44(2017) 143-149. [58] J.H. Park, S.H. Lee, G.S. Cha, D.S. Choi, D.H. Nam, J.H. Lee, J.K. Lee, C.H. Yun, K.J. Jeong, C.B. Park, Cofactor-free light-driven whole-cell cytochrome P450 catalysis, Angew. Chem. Int. Ed. 54(3) (2015) 969-973. [59] N.H. Tran, D. Nguyen, S. Dwaraknath, S. Mahadevan, G. Chavez, A. Nguyen, T. Dao, S. Mullen, T.A. Nguyen, L.E. Cheruzel, An efficient light-driven P450 BM3 biocatalyst, J. Am. Chem. Soc. 135(39) (2013) 14484-14487. [60] S. Bleif, F. Hannemann, J. Zapp, D. Hartmann, J. Jauch, R. Bernhardt, A new Bacillus megaterium whole-cell catalyst for the hydroxylation of the pentacyclic triterpene 11-keto-β-boswellic acid (KBA) based on a recombinant cytochrome P450 system, Appl. Microbiol. Biotechnol. 93(3) (2012) 1135-1146. [61] Z.Z. Chang, X.Q. Wang, R.S. Wei, Z.Y. Liu, H. Shan, G.Z. Fan, H.L. Hu, Functional expression and purification of CYP93C20, a plant membrane-associated cytochrome P450 from Medicago truncatula, Protein Expr, Purif. 150(2018) 44-52. [62] D.R. McDougle, A. Palaria, E. Magnetta, D.D. Meling, A. Das, Functional studies of Nterminally modified CYP2J2 epoxygenase in model lipid bilayers, Protein Sci. 22(7) (2013) 964-979. [63] A.C. Looman, J. Bodlaender, L.J. Comstock, D. Eaton, P. Jhurani, H.A. de Boer, P.H. van Knippenberg, Influence of the codon following the AUG initiation codon on the expression of a modified lacZ gene in Escherichia coli, EMBO J. 6(8) (1987) 2489-2492. [64] N. Ma, Z.F. Chen, J. Chen, J.F. Chen, C. Wang, H.F. Zhou, L.S. Yao, O. Shoji, Y. Watanabe, Z.Q. Cong, Dual-Functional Small Molecules for Generating an Efficient Cytochrome P450BM3 Peroxygenase, Angew. Chem. Int. Ed. 57(26) (2018) 7628-7633. [65] M. Hofrichter, R. Ullrich, Heme-thiolate haloperoxidases:versatile biocatalysts with biotechnological and environmental significance, Appl. Microbiol. Biotechnol. 71(3) (2006) 276-288. [66] P.D. Shaw, L.P. Hager, Biological chlorination 3 beta-ketoadipate chlorinase soluble enzyme system, J. Biol. Chem. 234(10) (1959) 2565-2569. [67] D.R. Morris, L.P. Hager, Chloroperoxidase I isolation and properties of crystalline glycoprotein, J. Biol. Chem. 241(8) (1966) 1763-1768. [68] M. Sundaramoorthy, Chloroperoxidase, John Wiley & Sons, Encyclopedia of Inorganic and Bioinorganic Chemistry, 2012. [69] P.F. Hollenberg, L.P. Hager, P-450 Nature of carbon-monoxide complex of ferrous chloroperoxidase, J. Biol. Chem. 248(7) (1973) 2630-2633. [70] Y. Liu, Y.L. Wang, Y.C. Jiang, M.C. Hu, S.N. Li, Q.G. Zhai, Biocatalytic synthesis of C3 chiral building blocks by chloroperoxidase-catalyzed enantioselective halo-hydroxylation and epoxidation in the presence of ionic liquids, Biotechnol. Prog. 31(3) (2015) 724-729. [71] M. Buchhaupt, K. Ehrich, S. Hüttmann, J. Guder, J. Schrader, Over-expression of chloroperoxidase in Caldariomyces fumago, Biotechnol. Lett. 33(11) (2011) 2225-2231. [72] B.A. Kaup, K. Ehrich, M. Pescheck, J. Schrader, Microparticle-enhanced cultivation of filamentous microorganisms:increased chloroperoxidase formation by Caldariomyces fumago as an example, Biotechnol. Bioeng. 99(3) (2008) 491-498. [73] X.W. Yi, M. Mroczko, K.M. Manoj, X.T. Wang, L.P. Hager, Replacement of the proximal heme thiolate ligand in chloroperoxidase with a histidine residue, Proc. Natl. Acad. Sci. 96(22) (1999) 12412-12417. [74] F. van de Velde, M. Bakker, F. van Rantwijk, G.P. Rai, L.P. Hager, R.A. Sheldon, Engineering chloroperoxidase for activity and stability, J. Mol. Catal. B Enzym. 11(4) (2001) 765-769. [75] G.P. Rai, S. Sakai, A.M. Flórez, L. Mogollon, L.P. Hager, Directed evolution of chloroperoxidase for improved epoxidation and chlorination catalysis, Adv. Synth. Catal. 343(6-7) (2001) 638-645. [76] R.J. Jiao, Y. Tan, Y.C. Jiang, M.C. Hu, S.N. Li, Q.G. Zhai, Ordered mesoporous silica matrix for immobilization of chloroperoxidase with enhanced biocatalytic performance for oxidative decolorization of azo dye, Ind. Eng. Chem. Res. 53(31) (2014) 12201-12208. [77] J.Z. Liu, M. Wang, Improvement of activity and stability of chloroperoxidase by chemical modification, BMC Biotechnol. 7(1) (2007) 23. [78] Y. Liu, Y.M. Zhang, X.J. Li, Q.P. Yuan, H. Liang, Self-repairing metal-organic hybrid complexes for reinforcing immobilized chloroperoxidase reusability, Chem. Commun. 53(22) (2017) 3216-3219. [79] J. He, Y.M. Zhang, Q.P. Yuan, H. Liang, Catalytic activity and application of immobilized chloroperoxidase by biometric magnetic nanoparticles, Ind. Eng. Chem. Res. 58(8) (2019) 3555-3560. [80] M. Hofrichter, R. Ullrich, M.J. Pecyna, C. Liers, T. Lundell, New and classic families of secreted fungal heme peroxidases, Appl. Microbiol. Biotechnol. 87(3) (2010) 871-897. [81] M. Hofrichter, H. Kellner, R. Herzog, A. Karich, C. Liers, K. Scheibner, V.W. Kimani, R. Ullrich, Fungal Peroxygenases:A Phylogenetically Old Superfamily of Heme Enzymes with Promiscuity for Oxygen Transfer Reactions, Grand challenges in fungal biotechnology, Springer, Cham, 2020369-403. [82] R. Ullrich, M. Hofrichter, The haloperoxidase of the agaric fungus Agrocybe aegerita hydroxylates toluene and naphthalene, FEBS Lett. 579(27) (2005) 6247-6250. [83] E. Aranda, M. Kinne, M. Kluge, R. Ullrich, M. Hofrichter, Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases, Appl. Microbiol. Biotechnol. 82(6) (2009) 1057-1066. [84] M. Kluge, R. Ullrich, K. Scheibner, M. Hofrichter, Stereoselective benzylic hydroxylation of alkylbenzenes and epoxidation of styrene derivatives catalyzed by the peroxygenase of Agrocybe aegerita, Green Chem. 14(2) (2012) 440-446. [85] S. Peter, M. Kinne, R. Ullrich, G. Kayser, M. Hofrichter, Epoxidation of linear, branched and cyclic alkenes catalyzed by unspecific peroxygenase, Enzym. Microb. Technol. 52(6-7) (2013) 370-376. [86] S. Peter, M. Kinne, X.S. Wang, R. Ullrich, G. Kayser, J.T. Groves, M. Hofrichter, Selective hydroxylation of alkanes by an extracellular fungal peroxygenase, FEBS J. 278(19) (2011) 3667-3675. [87] M. Kinne, M. Poraj-Kobielska, S.A. Ralph, R. Ullrich, M. Hofrichter, K.E. Hammel, Oxidative cleavage of diverse ethers by an extracellular fungal peroxygenase, J. Biol. Chem. 284(43) (2009) 29343-29349. [88] B.O. Burek, S. Bormann, F. Hollmann, J.Z. Bloh, D. Holtmann, Hydrogen peroxide driven biocatalysis, Green Chem. 21(12) (2019) 3232-3249. [89] P. Molina-Espeja, S. Ma, D.M. Mate, R. Ludwig, M. Alcalde, Tandem-yeast expression system for engineering and producing unspecific peroxygenase, Enzym. Microb. Technol. 73-74(2015) 29-33. [90] S. Bormann, A.G. Baraibar, Y. Ni, D. Holtmann, F. Hollmann, Specific oxyfunctionalisations catalysed by peroxygenases:opportunities, challenges and solutions, Catal. Sci. Technol. 5(4) (2015) 2038-2052. [91] M. Hofrichter, R. Ullrich, Oxidations catalyzed by fungal peroxygenases, Curr. Opin. Chem. Biol. 19(2014) 116-125. [92] Y.H. Wang, D.M. Lan, R. Durrani, F. Hollmann, Peroxygenases en route to becoming dream catalysts. What are the opportunities and challenges? Curr. Opin. Chem. Biol. 37(2017) 1-9. [93] A. Gutiérrez, E.D. Babot, R. Ullrich, M. Hofrichter, A.T. Martínez, J.C. del Río, Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase, Arch. Biochem. Biophys. 514(1-2) (2011) 33-43. [94] P. Molina-Espeja, M. Canellas, F.J. Plou, M. Hofrichter, F. Lucas, V. Guallar, M. Alcalde, Synthesis of 1-naphthol by a natural peroxygenase engineered by directed evolution, ChemBioChem 17(4) (2016) 341-349. [95] F. Lucas, E.D. Babot, M. Canellas, J.C. del Río, L. Kalum, R. Ullrich, M. Hofrichter, V. Guallar, A.T. Martínez, A. Gutiérrez, Molecular determinants for selective C-25-hydroxylation of vitamins D-2 and D-3 by fungal peroxygenases, Catal. Sci. Technol. 6(1) (2016) 288-295. [96] U.T. Bornscheuer, G.W. Huisman, R.J. Kazlauskas, S. Lutz, J.C. Moore, K. Robins, Engineering the third wave of biocatalysis, Nature 485(7397) (2012) 185-194. [97] B. Valderrama, M. Ayala, R. Vazquez-Duhalt, Suicide inactivation of peroxidases and the challenge of engineering more robust enzymes, Chem. Biol. 9(5) (2002) 555-565. [98] W.Q. Cheng, X.Y. Zheng, M. Yang, Hydrogen peroxide induced protein oxidation during storage and lyophilization process, J. Pharm. Sci. 105(6) (2016) 1837-1842. [99] S.L. Neidleman, W.F. Amon Jr., J. Geigert, Preparation of epoxides and glycols from gaseous alkenes, U.S. Pat. (1981), 4284723(1981). [100] F. Tieves, S.J.P. Willot, M.M.C.H. van Schie, M.C.R. Rauch, S.H.H. Younes, W.Y. Zhang, J.J. Dong, P.G. de Santos, J.M. Robbins, B. Bommarius, M. Alcalde, A.S. Bommarius, F. Hollmann, Formate Oxidase (FOx) from Aspergillus oryzae:One Catalyst Enables Diverse H2O2-Dependent Biocatalytic Oxidation Reactions, Angew. Chem. Int. Ed. 58(23) (2019) 7873-7877. [101] Z.Y. Wang, J.Q. Wang, G. Chen, W.N. Xu, Z.W. Fu, G.Q. Jiang, J.Z. Wu, Z. Liu, Polyelectrolytes tailored enzyme cascades with enhanced stability and activity for one-pot synthesis, ChemCatChem 10(23) (2018) 5391-5396. [102] Z.Y. Wang, W.N. Xu, Z.W. Fu, G.Q. Jiang, J.Z. Wu, Z. Liu, Pluronic-conjugated enzyme cascade for insitu oxidation in biphasic media, ChemCatChem 10(9) (2018) 2003-2008. [103] M. Comotti, C.D. Pina, R. Matarrese, M. Rossi, The catalytic activity of "Naked" gold particles, Angew. Chem. Int. Ed. 43(43) (2004) 5812-5815. [104] C.E. Paul, E. Churakova, E. Maurits, M. Girhard, V.B. Urlacher, F. Hollmann, In situ formation of H2O2 for P450 peroxygenases, Bioorg. Med. Chem. 22(20) (2014) 5692-5696. [105] S.K. Karmee, C. Roosen, C. Kohlmann, S. Lütz, L. Greiner, W. Leitner, Chemo-enzymatic cascade oxidation in supercritical carbon dioxide/water biphasic media, Green Chem. 11(7) (2009) 1052-1055. [106] S.J. Freakley, S. Kochius, J. van Marwijk, C. Fenner, R.J. Lewis, K. Baldenius, S.S. Marais, D.J. Opperman, S.T.L. Harrison, M. Alcalde, M.S. Smit, G.J. Hutchings, A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2, Nat. Commun. 10(2019) 4178. [107] S. Lutz, E. Steckhan, A. Liese, First asymmetric electroenzymatic oxidation catalyzed by a peroxidase, Electrochem. Commun. 6(6) (2004) 583-587. [108] C. Kohlmann, S. Lutz, Electroenzymatic synthesis of chiral sulfoxides, Eng. Life Sci. 6(2) (2006) 170-174. [109] C.E. La Rotta, E. D'Elia, E.P.S. Bon, Chloroperoxidase mediated oxidation of chlorinated phenols using electrogenerated hydrogen peroxide, Electron. J. Biotechnol. 10(1) (2007) 24-36. [110] S. Bormann, M.M.C.H. van Schie, T.P. De Almeida, W.Y. Zhang, M. Stöckl, R. Ulber, F. Hollmann, D. Holtmann, H2O2 production at low overpotentials for electroenzymatic halogenation reactions, ChemSusChem 12(21) (2019) 4759-4763. [111] D.S. Choi, Y. Ni, E. Fernandez-Fueyo, M. Lee, F. Hollmann, C.B. Park, Photoelectroenzymatic oxyfunctionalization on flavin-hybridized carbon nanotube electrode platform, ACS Catal. 7(3) (2017) 1563-1567. [112] A. Yayci, A.G. Baraibar, M. Krewing, E. Fernandez-Fueyo, F. Hollmann, M. Alcalde, R. Kourist, J.E. Bandow, Plasma-driven in situ production of hydrogen peroxide for biocatalysis, ChemSusChem 13(8) (2020) 2072-2079. [113] Churakova E., Kluge M., Ullrich R., Arends I., Hofrichter M., Hollmann F., Specific Photobiocatalytic Oxyfunctionalization Reactions, Angew. Chem., Int. Ed. 50(45) (2011) 10716-10719. [114] B.O. Burek, D.W. Bahnemann, J.Z. Bloh, Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide, ACS Catal. 9(1) (2019) 25-37. [115] S.J.P. Willot, E. Fernandez-Fueyo, F. Tieves, M. Pesic, M. Alcaldel, I.W.C.E. Arends, C. B. Park, F. Hollmann, Expanding the spectrum of light-driven peroxygenase reactions, ACS Catal. 9(2) (2019) 890-894. [116] W.Y. Zhang, E. Fernandez-Fueyo, Y. Ni, M. van Schie, J. Gacs, R. Renirie, R. Wever, F. G. Mutti, D. Rother, M. Alcalde, F. Hollmann, Selective aerobic oxidation reactions using a combination of photocatalytic water oxidation and enzymatic oxyfunctionalizations, Nat. Catal. 1(1) (2018) 55-62. [117] D.D. Zeng, W.J. Luo, J. Li, H.J. Liu, H.W. Ma, Q. Huang, C.H. Fan, Gold nanoparticlesbased nanoconjugates for enhanced enzyme cascade and glucose sensing, Analyst 137(19) (2012) 4435-4439. [118] W. Tang, W.P. Fan, W.Z. Zhang, Z. Yang, L. Li, Z.T. Wang, Y.L. Chiang, Y.J. Liu, L.M. Deng, L.C. He, Z.Y. Shen, O. Jacobson, M.A. Aronova, A. Jin, J. Xie, X.Y. Chen, Wet/Sono-Chemical Synthesis of Enzymatic Two-Dimensional MnO2 Nanosheets for Synergistic Catalysis-Enhanced Phototheranostics, Adv. Mater. 31(19) (2019) 1900401. [119] S.J. Freakley, S. Kochius, J. van Marwijk, C. Fenner, R.J. Lewis, K. Baldenius, S.S. Marais, D.J. Opperman, S.T.L. Harrison, M. Alcalde, M.S. Smit, G.J. Hutchings, A chemo-enzymatic oxidation cascade to activate C-H bonds with in situ generated H2O2, Nat. Commun. 10(1) (2019) 4178. [120] X.Y. Li, Y.F. Cao, K. Luo, Y.Z. Sun, J.R. Xiong, L.C. Wang, Z. Liu, J. Li, J.Y. Ma, J. Ge, H. Xiao, R.N. Zare, Highly active enzyme-metal nanohybrids synthesized in proteinpolymer conjugates, Nat. Catal. 2(8) (2019) 718-725. [121] M. Vázquez-González, C. Wang, I.J.N.C. Willner, Biocatalytic cascades operating on macromolecular scaffolds and in confined environments, Nat. Catal. 3(3) (2020) 256-273. |
[1] | Xiaohong Zhou, Wenfeng Zhou, Wei Zhuang, Chenjie Zhu, Hanjie Ying, Hongman Zhang. Enhanced production of cytidine 5'-monophosphate using biocatalysis of di-enzymes immobilized on amino-functionalized sepharose[J]. 中国化学工程学报, 2023, 58(6): 40-52. |
[2] | Dahai Jiang, Zhidi Min, Jing Leng, Huanqing Niu, Yong Chen, Dong Liu, Chenjie Zhu, Ming Li, Wei Zhuang, Hanjie Ying. Characterization of two halophilic adenylate cyclases from Thermobifida halotolerans and Haloactinopolyspora alba[J]. 中国化学工程学报, 2023, 53(1): 56-62. |
[3] | Xiaobo Ruan, Sheng Zhang, Wei Song, Jia Liu, Xiulai Chen, Liming Liu, Jing Wu. Efficient synthesis of tyrosol from L-tyrosine via heterologous Ehrlich pathway in Escherichia coli[J]. 中国化学工程学报, 2022, 47(7): 18-30. |
[4] | Chunyu Zhang, Yan Sun, Xiaoyan Dong. Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability[J]. 中国化学工程学报, 2022, 47(7): 48-53. |
[5] | Ziheng Cui, Shiding Zhang, Shengyu Zhang, Biqiang Chen, Yushan Zhu, Tianwei Tan. Green biomanufacturing promoted by automatic retrobiosynthesis planning and computational enzyme design[J]. 中国化学工程学报, 2022, 41(1): 6-21. |
[6] | Siyuan Gao, Yuanke Guo, Chen Ma, Ding Ma, Kequan Chen, Pingkai Ouyang, Xin Wang. Characterization and application of a recombinant dopa decarboxylase from Harmonia axyridis for the efficient biosynthesis of dopamine[J]. 中国化学工程学报, 2022, 41(1): 449-456. |
[7] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production[J]. 中国化学工程学报, 2021, 37(9): 128-136. |
[8] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds[J]. 中国化学工程学报, 2021, 32(4): 301-306. |
[9] | Wenqiang Li, Wentao Sun, Chun Li. Engineered microorganisms and enzymes for efficiently synthesizing plant natural products[J]. 中国化学工程学报, 2021, 29(2): 62-73. |
[10] | Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology[J]. 中国化学工程学报, 2021, 29(2): 121-135. |
[11] | Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review[J]. 中国化学工程学报, 2021, 29(2): 136-145. |
[12] | Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge[J]. 中国化学工程学报, 2021, 29(2): 146-167. |
[13] | Xiaoyan Zhuang, Qian Wu, Aihui Zhang, Langxing Liao, Baishan Fang. Single-molecule biotechnology for protein researches[J]. 中国化学工程学报, 2021, 29(2): 212-224. |
[14] | Dong Wan, Sunfan Li, Jianxin Zhang, Guilei Ma, Jie Pan. Intelligent self-assembly prodrug micelles loading doxorubicin in response to tumor microenvironment for targeted tumors therapy[J]. 中国化学工程学报, 2021, 39(11): 219-227. |
[15] | Junyang Xu, Yanjun Jiang, Liya Zhou, Li Ma, Zhihong Huang, Jiafu Shi, Jing Gao, Ying He. Nickel-Carnosine complex: A new carrier for enzymes immobilization by affinity adsorption[J]. 中国化学工程学报, 2021, 38(10): 237-246. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||