[1] S. Liu, S. Jiang, Zwitterionic polymer-protein conjugates reduce polymer-specific antibody response, Nano Today 11(3) (2016) 285-291. [2] L.A. Lerin, R.A. Loss, D. Remonatto, M.C. Zenevicz, M. Balen, V.O. Netto, J.L. Ninow, C.M. Trentin, J.V. Oliveira, D. de Oliveira, A review on lipase-catalyzed reactions in ultrasound-assisted systems, Bioprocess Biosyst. Eng. 37(12) (2014) 2381-2394. [3] N. Sarmah, D. Revathi, G. Sheelu, K.Y. Rani, S. Sridhar, V. Mehtab, C. Sumana, Recent advances on sources and industrial applications of lipases, Biotechnol. Prog. 34(1) (2018) 5-28. [4] Y. Masuda, S. Kugimiya, Y. Kawachi, K. Kato, Interparticle mesoporous silica as an effective support for enzyme immobilisation, RSC Adv. 4(7) (2014) 3573-3580. [5] M.F. Wang, W. Qi, C.X. Jia, Y.F. Ren, R.X. Su, Z.M. He, Enhancement of activity of cross-linked enzyme aggregates by a sugar-assisted precipitation strategy:Technical development and molecular mechanism, J. Biotechnol. 156(1) (2011) 30-38. [6] M.I. Kim, J. Kim, J. Lee, H. Jia, H.B. Na, J.K. Youn, J.H. Kwak, A. Dohnalkova, J.W. Grate, P. Wang, T. Hyeon, H.G. Park, H.N. Chang, Crosslinked enzyme aggregates in hierarchically-ordered mesoporous silica:A simple and effective method for enzyme stabilization, Biotechnol. Bioeng. 96(2) (2007) 210-218. [7] G. Bayramoglu, T. Doz, V.C. Ozalp, M.Y. Arica, Improvement stability and performance of invertase via immobilization on to silanized and polymer brush grafted magnetic nanoparticles, Food Chem. 221(2017) 1442-1450. [8] R.A. Sheldon, S. van Pelt, Enzyme immobilisation in biocatalysis:Why, what and how, Chem. Soc. Rev. 42(15) (2013) 6223-6235. [9] G.H. Peters, D.M. van Aalten, A. Svendsen, R. Bywater, Essential dynamics of lipase binding sites:The effect of inhibitors of different chain length, Protein Eng. 10(2) (1997) 149-158. [10] E.A. Manoel, J.C.S. dos Santos, D.M.G. Freire, N. Rueda, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports involves the open form of the enzyme, Enzym. Microb. Technol. 71(2015) 53-57. [11] A. Bastida, P. Sabuquillo, P. Armisen, R. Fernandez-Lafuente, J. Huguet, J.M. Guisan, Single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports, Biotechnol. Bioeng. 58(5) (1998) 486-493. [12] G. Fernandez-Lorente, J.M. Palomo, C. Mateo, R. Munilla, C. Ortiz, Z. Cabrera, J.M. Guisan, R. Fernandez-Lafuente, Glutaraldehyde cross-linking of lipases adsorbed on aminated supports in the presence of detergents leads to improved performance, Biomacromolecules 7(9) (2006) 2610-2615. [13] Z. Gao, J.L. Chu, T.Y. Jiang, T.T. Xu, W. Bin, B.F. He, Lipase immobilization on functionalized mesoporous TiO2:Specific adsorption, hyperactivation and application in cinnamyl acetate synthesis, Process Biochem. 64(2018) 152-159. [14] Y. Li, J.C. Hu, P.F. Han, Synthesis of magnetically modified palygorskite composite for immobilization of Candida sp 99-125 lipase via adsorption, Chin. J. Chem. Eng. 23(5) (2015) 822-826. [15] W. Li, H.Q. Shen, Y.F. Tao, B.Q. Chen, T.W. Tan, Amino silicones finished fabrics for lipase immobilization:Fabrics finishing and catalytic performance of immobilized lipase, Process Biochem. 49(9) (2014) 1488-1496. [16] Y.J. Wang, Y. Hu, H. Xu, G.S. Luo, Y.Y. Dai, Immobilization of lipase with a special microstructure in composite hydrophilic CA/hydrophobic PTFE membrane for the chiral separation of racemic ibuprofen, J. Membr. Sci. 293(1-2) (2007) 133-141. [17] C. Lahari, L.S. Jasti, N.W. Fadnavis, K. Sontakke, G. Ingavle, S. Deokar, S. Ponrathnam, Adsorption induced enzyme denaturation:The role of polymer hydrophobicity in adsorption and denaturation of alpha-chymotrypsin on allyl glycidyl ether (AGE)-ethylene glycol dimethacrylate (EGDM) copolymers, Langmuir 26(2) (2010) 1096-1106. [18] A.B. Lowe, C.L. McCormick, Synthesis and solution properties of zwitterionic polymers, Chem. Rev. 102(11) (2002) 4177-4189. [19] Y. Higaki, Y. Inutsuka, T. Sakamak, Y. Terayama, A. Takenaka, K. Higaki, N.L. Yamada, T. Moriwaki, Y. Ikemoto, A. Takahara, Effect of charged group spacer length on hydration state in zwitterionic poly(sulfobetaine) brushes, Langmuir 33(34) (2017) 8404-8412. [20] E.J. Liu, A. Sinclair, A.J. Keefe, B.L. Nannenga, B.L. Coyle, F. Baneyx, S.Y. Jiang, EKylation:Addition of an alternating-charge peptide stabilizes proteins, Biomacromolecules 16(10) (2015) 3357-3361. [21] A.J. Keefe, S.Y. Jiang, Poly(zwitterionic)protein conjugates offer increased stability without sacrificing binding affinity or bioactivity, Nat. Chem. 4(1) (2012) 60-64. [22] L.Q. Zhang, Y. Sun, Poly(carboxybetaine methacrylate)-grafted silica nanoparticle:A novel carrier for enzyme immobilization, Biochem. Eng. J. 132(2018) 122-129. [23] C.Y. Zhang, X.Y. Dong, Z. Guo, Y. Sun, Remarkably enhanced activity and substrate affinity of lipase covalently bonded on zwitterionic polymer-grafted silica nanoparticles, J. Colloid Interface Sci. 519(2018) 145-153. [24] H.S. Qi, Y. Du, G.N. Hu, L. Zhang, Poly(carboxybetaine methacrylate)-functionalized magnetic composite particles:A biofriendly support for lipase immobilization, Int. J. Biol. Macromol. 107(2018) 2660-2666. [25] A. Venault, W.Y. Huang, S.W. Hsiao, A. Chinnathambi, S.A. Alharbi, H. Chen, J. Zheng, Y. Chang, Zwitterionic modifications for enhancing the antifouling properties of poly (vinylidene fluoride) membranes, Langmuir 32(16) (2016) 4113-4124. [26] G. Zheng, B. Shu, S. Yan, Preparation and characterization of immobilized lipase on magnetic hydrophobic microspheres, Enzym. Microb. Technol. 32(7) (2003) 776-782. [27] M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72(1976) 248-254. [28] N. Miletic, Z. Vukovic, A. Nastasovic, K. Loos, Effect of Candida antarctica lipase B immobilization on the porous structure of the carrier, Macromol. Biosci. 11(11) (2011) 1537-1543. [29] P. Grochulski, Y. Li, J.D. Schrag, F. Bouthillier, P. Smith, D. Harrison, B. Rubin, M. Cygler, Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem. 268(17) (1993) 12843-12847. [30] J.Y. Song, H. Shen, Y. Yang, Z.X. Zhou, P. Su, Multifunctional magnetic particles for effective suppression of non-specific adsorption and coimmobilization of multiple enzymes by DNA directed immobilization, J. Mater. Chem. B 6(36) (2018) 5718-5728. [31] F.I. Khan, D. Lan, R. Durrani, W. Huan, Z. Zhao, Y. Wang, The lid domain in lipases:Structural and functional determinant of enzymatic properties, Front. Bioeng. Biotechnol. 5(2017) 16. [32] V. Delorme, R. Dhouib, S. Canaan, F. Fotiadu, F. Carriere, J.F. Cavalier, Effects of surfactants on lipase structure, activity, and inhibition, Pharm. Res. 28(8) (2011) 1831-1842. [33] R.C. Rodrigues, R. Fernandez-Lafuente, Lipase from Rhizomucor miehei as a biocatalyst in fats and oils modification, J. Mol. Catal. B Enzym. 66(1-2) (2010) 15-32. [34] C. Garcia-Galan, A. Berenguer-Murcia, R. Fernandez-Lafuente, R.C. Rodrigues, Potential of different enzyme immobilization strategies to improve enzyme performance, Adv. Synth. Catal. 353(16) (2011) 2885-2904. [35] L. Fernandez-Lopez, S.G. Pedrero, N. Lopez-Carrobles, B.C. Gorines, J.J. Virgen-Ortiz, R. Fernandez-Lafuente, Effect of protein load on stability of immobilized enzymes, Enzym. Microb. Technol. 98(2017) 18-25. [36] V. Vescovi, W. Kopp, J.M. Guisan, R.L.C. Giordano, A.A. Mendes, P.W. Tardioli, Improved catalytic properties of Candida antarctica lipase B multi-attached on tailormade hydrophobic silica containing octyl and multifunctional amino-glutaraldehyde spacer arms, Process Biochem. 51(12) (2016) 2055-2066. [37] J.D. Cui, T. Lin, Y.X. Feng, Z.L. Tan, S.R. Jia, Preparation of spherical cross-linked lipase aggregates with improved activity, stability and reusability characteristic in water-in-ionic liquid microemulsion, J. Chem. Technol. Biotechnol. 92(7) (2017) 1785-1793. [38] G. Sargazi, D. Afzali, A.K. Ebrahimi, A. Badoei-Dalfard, S. Malekabadi, Z. Karami, Ultrasound assisted reverse micelle efficient synthesis of new Ta-MOF@Fe3O4 core/shell nanostructures as a novel candidate for lipase immobilization, Mater. Sci. Eng. CMater. Biol. Appl. 93(2018) 768-775. [39] Y. Li, F. Gao, W. Wei, J.B. Qu, G.H. Ma, W.Q. Zhou, Pore size of macroporous polystyrene microspheres affects lipase immobilization, J. Mol. Catal. B Enzym. 66(1-2) (2010) 182-189. [40] S.Y. Jiang, Z.Q. Cao, Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications, Adv. Mater. 22(9) (2010) 920-932. [41] J.Y. Wang, F.L. Ji, J.S. Xing, S. Cui, Y.M. Bao, W.B. Hao, Lipase immobilization onto the surface of PGMA-b-PDMAEMA-grafted magnetic nanoparticles prepared via atom transfer radical polymerization, Chin. J. Chem. Eng. 22(11-12) (2014) 1333-1339. [42] N. Chennamsetty, V. Voynov, V. Kayser, B. Helk, B.L. Trout, Design of therapeutic proteins with enhanced stability, Proc. Natl. Acad. Sci. U. S. A. 106(29) (2009) 11937-11942. [43] G.H. Li, A.G. Nandgaonkar, K.Y. Lu, W.E. Krause, L.A. Lucia, Q.F. Wei, Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation:a de novo adsorption and biocatalytic synergy, RSC Adv. 6(47) (2016) 41420-41427. [44] Y.I. Dogac, I. Deveci, B. Mercimek, M. Teke, A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability, Int. J. Biol. Macromol. 96(2017) 302-311. |