中国化学工程学报 ›› 2021, Vol. 29 ›› Issue (2): 136-145.DOI: 10.1016/j.cjche.2020.12.011
• Biocatalysis and Bioreactor Engineering • 上一篇 下一篇
Han Zhang1, Yunpeng Bai1, Ning Zhu2, Jianhe Xu1
收稿日期:
2020-10-18
修回日期:
2020-12-03
出版日期:
2021-02-28
发布日期:
2021-05-15
通讯作者:
Jianhe Xu
Han Zhang1, Yunpeng Bai1, Ning Zhu2, Jianhe Xu1
Received:
2020-10-18
Revised:
2020-12-03
Online:
2021-02-28
Published:
2021-05-15
Contact:
Jianhe Xu
摘要: Microfluidic, as the systems for using microchannel (micron-or sub-micron scale) to process or manipulate microflow, is being widely applied in enzyme biotechnology and biocatalysis. Microfluidic immobilized enzyme reactor (MIER) is a tool with great value for the study of catalytic property and optimal reaction parameter in a flourishing and highly producing manner. In view of its advantages in efficiency, economy, and addressable recognition especially, MIER occupies an important position in the investigation of life science, including molecular biology, bioanalysis and biosensing, biocatalysis etc. Immobilization of enzymes can generally improve their stability, and upon most occasions, the immobilized enzyme is endowed with recyclability. In this review, the enzyme immobilization techniques applied in MIER will be discussed, followed by summarizing the novel developments in the field of MIER for biocatalysis, bioconversion and bioanalysis. The preponderances and deficiencies of the current state-of-the-art preparation ways of MIER are peculiarly discussed. In addition, the prospects of its future study are outlined.
Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review[J]. 中国化学工程学报, 2021, 29(2): 136-145.
Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 136-145.
[1] L. Tamborini, P. Fernandes, F. Paradisi, F. Molinari, Flow bioreactors as complementary tools for biocatalytic process intensification, Trends Biotechnol. 36 (2018) 73–88. [2] A. De Simone, M. Naldi, M. Bartolini, L. Davani, V. Andrisano, Immobilized enzyme reactors: an overview of applications in drug discovery from 2008 to 2018,Chromatographia.82(2019)425-441. [3] Z.Y. Wu, H. Zhang, F. Li, F.Q. Yang, Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis-based immobilized enzyme microreactor, Electrophoresis 41 (2020) 1326–1332. [4] J. Britton, S. Majumdar, G.A. Weiss, Continuous flow biocatalysis, Chem. Soc. Rev. 47 (2018) 5891–5918. [5] M. Gojun, L. Pustahija, A.J. Tusek, A. Salic, D. Valinger, B. Zelic, Kinetic parameter estimation and mathematical modelling of lipase catalysed biodiesel synthesis in a microreactor, Micromachines 10 (2019) 11. [6] D.T. Chiu, A.J. deMello, D. Di Carlo, P.S. Doyle, C. Hansen, R.M. Maceiczyk, R.C. R. Wootton, Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences, Chem. 2 (2017) 201–223. [7] K.S. Elvira, X.C.I. Solvas, R.C.R. Wootton, A.J. deMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5 (2013) 905–915. [8] A. Salic, B. Zelic, Synergy of microtechnology and biotechnology: microreactors as an effective tool for biotransformation processes, Food Technol. Biotechnol. 56 (2018) 464–479. [9] P. Gruber, M.P.C. Marques, B. O’Sullivan, F. Baganz, R. Wohlgemuth, N. Szita, Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors, Biotechnol. J. 12 (2017) 1700030. [10] M.P. Thompson, I. Penafiel, S.C. Cosgrove, N.J. Turner, Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals, Org. Process Res. Dev. 23 (2019) 9–18. [11] J.P. Adams, M.J.B. Brown, A. Diaz-Rodriguez, R.C. Lloyd, G.D. Roiban, Biocatalysis: A pharma perspective, Adv. Synth. Catal. 361 (2019) 2421–2432. [12] A. Giannakopoulou, E. Gkantzou, A. Polydera, H. Stamatis, Multienzymatic nanoassemblies: recent progress and applications, Trends Biotechnol. 38 (2020) 202–216. [13] X. Liu, X.D. Zhu, M.A. Camara, Q.S. Qu, Y.C. Shan, L. Yang, Surface modification with highly-homogeneous porous silica layer for enzyme immobilization in capillary enzyme microreactors, Talanta 197 (2019) 539–547. [14] L.R. Bogdanova, A.M. Rogov, O.S. Zueva, Y.F. Zuev, Lipase enzymatic microreactor in polysaccharide hydrogel: structure and properties, Russ. Chem. Bull. 68 (2019) 400–404. [15] C. Nagy, A. Kecskemeti, A. Gaspar, Fabrication of immobilized enzyme reactors with pillar arrays into polydimethylsiloxane microchip, Anal. Chim. Acta. 1108 (2020) 70–78. [16] Z.J. Jin, G.T. Ding, G.X. Yan, G.Y. Li, W. Zhang, L.X. Yang, W.H. Li, Rapid detection of antibiotic resistance genes in lactic acid bacteria using PMMA-based microreactor arrays, Appl. Microbiol. Biotechnol. 104 (2020) 6375–6383. [17] T. Burgahn, P. Pietrek, R. Dittmeyer, K.S. Rabe, C.M. Niemeyer, Evaluation of a microreactor for flow biocatalysis by combined theory and experiment, ChemCatChem 12 (2020) 2452–2460. [18] T. Ikawa, S. Masuda, S. Akai, Microflow fluorinations of benzynes: efficient synthesis of fluoroaromatic compounds, Chem. Pharm. Bull. 66 (2018) 1153–1164. [19] K. Marcisz, K. Kaniewska, M. Mackiewicz, A. Nowinska, J. Romanski, Z. Stojek, M. Karbarz, Electroactive, mediating and thermosensitive microgel useful for covalent entrapment of enzymes and formation of sensing layer in biosensors, Electroanalysis 30 (2018) 2853–2860. [20] X.T. Hu, J.Q. Yang, C.J. Chen, H. Khan, Y.N. Guo, L. Yang, Capillary electrophoresis-integrated immobilized enzyme microreactor utilizing single-step in-situ penicillinase-mediated alginate hydrogelation: Application for enzyme assays of penicillinase, Talanta 189 (2018) 377–382. [21] S.J. He, J. Zhang, Y. Dong, X.Y. Duan, F.T. Yang, T. Luo, Z. Wang, Y.M. Dong, Establishment and development of a CZE-UV method for rapid measurement of aprotinin potency, Electrophoresis 41 (2019) 168–174. [22] C. Zhong, Z.X. Lei, H. Huang, M.Y. Zhang, Z.W. Cai, Z.A. Lin, One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis, J. Mat. Chem. B. 8 (2020) 4642–4647. [23] S. Moore, S. Hess, J. Jorgenson, Characterization of an immobilized enzyme reactor for on-line protein digestion, J. Chromatogr. A. 1476 (2016) 1–8. [24] K. Meller, M. Szumski, B. Buszewski, Microfluidic reactors with immobilized enzymes-characterization, dividing, perspectives, Sens. Actuator B-Chem. 244 (2017) 84–106. [25] N. Sugai, Y. Morita, T. Komatsu, Nonbubble-propelled biodegradable microtube motors consisting only of protein, Chem.-Asian J. 14 (2019) 2953–2957. [26] Bras, Eduardo J S; Domingues, Cristiana; Chu, Virginia; Fernandes, Pedro; Conde, Joao Pedro, Microfluidic bioreactors for enzymatic synthesis in packed-bed reactors-Multi-step reactions and upscaling, J. Biotechnol. 323 (2020) 24–32. [27] H.H. Shi, K.X. Nie, B. Dong, M.Q. Long, H. Xu, Z.C. Liu, Recent progress of microfluidic reactors for biomedical applications, Chem. Eng. J. 361 (2019) 635–650. [28] H.H. Zhao, Y.Q. Liu, J. Chen, Screening of alpha-glucosidase inhibitors from natural flavonoids by an in-capillary assay combining PMMA and EMMA, Anal. Methods 11 (2019) 1371–1378. [29] J.M. Bolivar, M.A. Tribulato, Z. Petrasek, B. Nidetzky, Let the substrate flow, not the enzyme: practical immobilization of D-Amino acid oxidase in a glass microreactor for effective biocatalytic conversions, Biotechnol. Bioeng. 113 (2016) 2342–2349. [30] J.C. Wang, S.Q. Bai, Y.J. Wang, G.S. Luo, T. Wang, Preparation of large In(OH)(3) and In2O3 particles through a seed-mediated growth method in a microreactor, Particuology 49 (2020) 1–8. [31] Y.Song,S.E.Liu,B.Y.Wang,M.J.Shang,L.L.Lin,Y.H.Su,Continuousandcontrollable preparation of polyaniline with different reaction media in microreactors for supercapacitor applications, Chem. Eng. Sci. 207 (2019) 820–828. [32] T. Rob, P. Liuni, P.K. Gill, S.L. Zhu, N. Balachandran, P.J. Berti, D.J. Wilson, Measuring dynamics in weakly structured regions of proteins using microfluidics-enabled subsecond H/D exchange mass spectrometry, Anal. Chem. 84 (2012) 3771–3779. [33] A.I. Neto, P.A. Levkin, J.F. Mano, Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture, Mater. Horizons. 28 (2020) 1841–1846. [34] P. Gruber, F. Carvalho, M.P.C. Marques, B. O’Sullivan, F. Subrizi, D. Dobrijevic, J. Ward, H.C. Hailes, P. Fernandes, R. Wohlgemuth, F. Baganz, N. Szita, Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system, Biotechnol. Bioeng. 115 (2018) 586–596. [35] A.J. Tusek, M. Tisma, V. Bregovic, A. Pticar, Z. Kurtanjek, B. Zelic, Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor, Biotechnol. Bioprocess Eng. 18 (2013) 689–696. [36] X.J. Li, Z.R. Yin, X.J. Cui, L. Yang, Capillary electrophoresis-integrated immobilized enzyme microreactor with graphene oxide as support: Immobilization of negatively charged L-lactate dehydrogenase via hydrophobic interactions, Electrophoresis 41 (2019) 175–182. [37] W.N. Min, W.P. Wang, J.R. Chen, A.J. Wang, Z.D. Hu, On-line immobilized acetylcholinesterase microreactor for screening of inhibitors from natural extracts bycapillary electrophoresis, Anal. Bioanal. Chem.404(2012) 2397–2405. [38] P. He, G. Greenway, S.J. Haswell, Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics, Microfluid. Nanofluid. 8 (2010) 565–573. [39] Y.X. Tang, W. Li, Y.Y. Wang, Y.F. Zhang, Y.B. Ji, Rapid on-line system for preliminary screening of lipase inhibitors from natural products by integrating capillary electrophoresis with immobilized enzyme microreactor, J. Sep. Sci. 43 (2020) 1003–1010. [40] Y.C. Bi, H. Zhou, H.H. Jia, P. Wei, Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester, RSC Adv. 7 (2017) 12283–12291. [41] D.S. Peterson, T. Rohr, F. Svec, J.M.J. Frèchet, Enzymatic Microreactor-on-achip: protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices, Anal. Chem. 74 (2002) 4081–4088. [42] H.Y. Zhao, Z.L. Chen, Screening of aromatase inhibitors in traditional chinese medicines by electrophoretically mediated microanalysis in a partially filled capillary, J. Sep. Sci. 36 (2013) 2691–2697. [43] M.P. Zarabadi, M. Couture, S.J. Charette, J. Greener, A generalized kinetic framework applied to whole-cell bioelectrocatalysis in bioflow reactors clarifies performance enhancements for geobacter sulfurreducens biofilms, ChemElectroChem. 6 (2019) 2715–2718. [44] Z.Y. Wu, H. Zhang, Q.Q. Li, F.Q. Yang, D.Q. Li, Capillary electrophoresis-based online immobilized enzyme reactor for beta-glucosidase kinetics assays and inhibitors screening, J. Chromatogr. B. 1110 (2019) 67–73. [45] N. Lu, D. Sticker, A. Kretschmann, N.J. Petersen, J.P. Kutter, A thiol-ene microfluidic device enabling continuous enzymatic digestion and electrophoretic separation as front-end to mass spectrometric peptide analysis, Anal. Bioanal. Chem. 412 (2020) 3559–3571. [46] T.C. Logan, D.S. Clark, T.B. Stachowiak, F. Svec, J.M.J. Frechet, Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions, Anal. Chem. 79 (2007) 6592–6598. [47] M.Q. Li, H. Shen, Z.X. Zhou, W.T. He, Controllable and high-performance immobilized enzyme reactor: DNA-directed immobilization of multienzyme in polyamidoamine dendrimer-functionalized capillaries, Electrophoresis 41 (2020) 335–344. [48] H.C. Schroder, F. Natalio, I. Shukoor, W. Tremel, U. Schlossmacher, X.H. Wang, W.E.G. Muller, Apposition of silica lamellae during growth of spicules in the demosponge suberites domuncula: Biological/biochemical studies and chemical/biomimetical confirmation, J. Struct. Biol. 159 (2007) 325–334. [49] J.G. Rivera, P.B. Messersmith, Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion, J. Sep. Sci. 35 (2012) 1514–1520. [50] M.X. Cheng, R. Wang, B.F. Zhang, Z.K. Mao, Z.L. Chen, Rapid proteolytic digestion and peptide separation using monolithic enzyme microreactor coupled with capillary electrophoresis, J. Pharm. Biomed. Anal. 165 (2019) 129–134. [51] H. Lin, C.F. Zhang, Y.J. Lin, Y.Q. Chang, J. Crommen, Q.Q. Wang, Z.J. Jiang, J.L. Guo, A strategy for screening trypsin inhibitors from traditional Chinese medicine based on a monolithic capillary immobilized enzyme reactor coupled with offline liquid chromatography and mass, J. Sep. Sci. 42 (2019) 1980–1989. [52] Z.D. Knezevic-Jugovic, Z. Mg, S.M. Jakovetic, A.B. Stefanovic, E.S. Dzunuzovic, An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst, Biotechnol. Prog. 32 (2016) 43–53. [53] M. Xiong, B. Gu, J.D. Zhang, J.J. Xu, H.Y. Chen, H. Zhong, Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer, Biosens. Bioelectron. 50 (2013) 229–234. [54] E.C.A. Stigter, G.J. de Jong, W.P. van Bennekom, Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping, Anal. Chim. Acta 629 (2008) 231–238. [55] M.S. Thomsen, B. Nidetzky, Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes, Biotechnol. J. 4 (2009) 98–107. [56] K. Meller, P. Pomastowski, D. Grzywinski, M. Szumski, B. Buszewski, Preparation and evaluation of dual-enzyme microreactor with coimmobilized trypsin and chymotrypsin, J. Chromatogr. A 1440 (2016) 45–54. [57] L. Lloret, G. Eibes, M.T. Moreira, G. Feijoo, J.M. Lema, M. Miyazaki, Improving the catalytic performance of laccase using a novel continuous-flow microreactor, Chem. Eng. J. 223 (2013) 497–506. [58] Y. Liu, H.X. Wang, Q.P. Liu, H.Y. Qu, B.H. Liu, P.Y. Yang, Improvement of proteolytic efficiency towards low-level proteins by an antifouling surface of alumina gel in a microchannel, Lab Chip. 10 (2010) 2887–2893. [59] J.C. Pastre, D.L. Browne, S.V. Ley, Flow chemistry syntheses of natural products, Chem. Soc. Rev. 42 (2013) 8849–8869. [60] L. Syga, D. Spakman, C.M. Punter, B. Poolman, Method for immobilization of living and synthetic cells for high-resolution imaging and single-particle tracking, Sci. Rep. 8 (2018) 13789. [61] D. Valikhani, J.M. Bolivar, M. Viefhues, D.N. McIlroy, E.X. Vrouwe, B. Nidetzky, A Spring in performance: silica nanosprings boost enzyme immobilization in microfluidic channels, ACS Appl. Mater. Interfaces 9 (2017) 34641–34649. [62] R.C. Rodrigues, J.J. Virgen-Ortiz, J.C.S. dos Santo, A. Berenguer-Murcia, A.R. Alcantara, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnol. Adv. 37 (2019) 756–770. [63] M. Bilal, H.M.N. Iqbal, Naturally-derived biopolymers: Potential platforms for enzyme immobilization, Int. J. Biol. Macromol. 130 (2019) 462–482. [64] M. Bilal, Y.P. Zhao, T. Rasheed, H.M.N. Iqbal, Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review, Int. J. Biol. Macromol. 120 (2018) 2530–2544. [65] S.Z. Ren, C.H. Li, X.B. Jiao, S.R. Jia, Y.J. Jiang, M. Bilal, J.D. Cui, Recent progress in multienzymes co-immobilization and multienzyme system applications, Chem. Eng. J. 373 (2019) 1254–1278. [66] E. Gkantzou, M. Patila, H. Stamatis, Magnetic microreactors with immobilized enzymes-from assemblage to contemporary applications, Catalysts 8 (2018) 7. [67] N. Mangkorn, P. Kanokratana, N. Roongsawang, A. Laobuthee, N. Laosiripojana, V. Champreda, Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles, J. Biosci. Bioeng. 127 (2019) 265–272. [68] S. Asmat, A.H. Anwer, Q. Husain, Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours, Int. J. Biol. Macromol. 140 (2019) 484–495. [69] J. He, S.S. Sun, Z. Zhou, Q.P. Yuan, Y.H. Liu, H. Liang, Thermostable enzymeimmobilized magnetic responsive Ni-based metal-organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of Sadenosylmethionine, Dalton Trans. 48 (2019) 2077–2085. [70] J. Bataille, A. Viode, I. Pereiro, J.P. Lafleur, F. Varenne, S. Descroix, F. Becher, J.P. Kutter, C. Roesch, C. Pous, M. Taverna, A. Pallandre, C. Smadja, I. Le Potier, Ona-chip tryptic digestion of transthyretin: a step toward an integrated microfluidic system for the follow-up of familial transthyretin amyloidosis, Analyst. 143 (2018) 1077–1086. [71] P. Ramana, J. Schejbal, K. Houthoofd, J. Martens, E. Adams, P. Augustijns, Z. Glatz, A. Van Schepdael, An improved design to capture magnetic microparticles for capillary electrophoresis based immobilized microenzyme reactors, Electrophoresis 39 (2018) 981–988. [72] H. Shen, J.Y. Song, Z.X. Zhou, M.Q. Li, R.Q. Zhang, P. Su, Y. Yang, DNA-Directed immobilized enzymes on recoverable magnetic nanoparticles shielded in nucleotide coordinated polymers, Ind. Eng. Chem. Res. 58 (2019) 8585–8596. [73] H. Shen, J.Y. Song, Y. Yang, P. Su, Y. Yang, DNA-directed enzyme immobilization on Fe3O4 modified with nitrogen-doped graphene quantum dots as a highly efficient and stable multi-catalyst system, J. Mater. Sci. 54 (2019) 2535–2551. [74] A.M. Carvalho, C.V. Montes, R.J. Schneider, A. Madder, An anticaffeine antibody-oligonucleotide conjugate for DNA-directed immobilization in Environmental immunoarrays, Langmuir 34 (2018) 14834–14841. [75] N. Wu, S.M. Wang, Y. Yang, J.Y. Song, P. Su, Y. Yang, DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor, Int. J. Biol. Macromol. 113 (2018) 38–44. [76] T. Vong, S. Schoffelen, S.F.M. van Dongen, H. Zuilhof, A DNA-based strategy for dynamic positional enzyme immobilization inside fused silica microchannels, Chem. Sci. 2 (2011) 1278–1285. [77] M. Mogharabi-Manzari, M. Heydari, S. Sadeghian-Abadi, M. Yousefi-Mokri, M. A. Faramarzi, Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry, Biocatal. Biotransform. 37 (2019) 455–465. [78] Z.Q. Wang, J.L. Lv, Z.L. An, M. Kimura, T. Ono, Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor, Process Biochem. 79 (2019) 57–64. [79] B. Celebi, A. Bayraktar, A. Tuncel, Synthesis of a monolithic, microimmobilised enzyme reactor via click-chemistry, Anal. Bioanal. Chem. 403 (2012) 2655–2663. [80] S. Guerrero, D. Cadano, L. Agui, R. Barderas, S. Campuzano, P. Yanez-Sedeno, J. M. Pingarron, Click chemistry-assisted antibodies immobilization for immunosensing of CXCL7 chemokine in serum, J. Electroanal. Chem. 837 (2019) 246–253. [81] A.R. Grimm, D.F. Sauer, T.M. Garakani, K. Rubsam, T. Polen, M.D. Davari, F. Jakob, J. Schiffels, J. Okuda, U. Schwaneberg, Anchor peptide-mediated surface immobilization of a grubbs-hoveyda-type catalyst for ring-opening metathesis polymerization, Bioconjugate Chem. 30 (2019) 714–720. [82] L. Zhang, N. Vila, A. Walcarius, M. Etienne, Molecular and biological catalysts coimmobilization on electrode by combining diazonium electrografting and sequential click chemistry, ChemElectroChem. 5 (2018) 2208–2217. [83] P.R. Fan, X. Zhao, Z.H. Wei, Y.P. Huang, Z.S. Liu, Robust immobilized enzyme reactor based on trimethylolpropane trimethacrylate organic monolithic matrix through “thiol-ene” click reaction, Eur. Polym. J. 124 (2020) 109456. [84] Z.H. Wei, P.R. Fan, Y.J. Jiao, Y. Wang, Y.P. Huang, Z.S. Liu, Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein, Anal. Chim. Acta. 1102 (2020) 1–10. [85] J. Lin, Y.J. Liu, S. Chen, X.Y. Le, X.H. Zhou, Z.Y. Zhao, Y.Y. Ou, J.H. Yang, Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal, Int. J. Biol. Macromol. 84 (2016) 189–199. [86] J.F. Ma, C.Y. Hou, Y. Liang, T.T. Wang, Z. Liang, L.H. Zhang, Y.K. Zhang, Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith, Proteomics 11 (2011) 991–995. [87] Y. Li, B. Yan, X.Q. Xu, C.H. Deng, P.Y. Yang, X.Z. Shen, X.M. Zhang, On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 21 (2007) 2263–2268. [88] J.W. Di, C.P. Shen, S.H. Peng, Y.F. Tu, S.J. Li, A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode, Anal. Chim. Acta. 553 (2005) 196–200. [89] W. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch, C.J. Sumby, N.G. White, P. Falcaro, C.J. Doonan, Enzyme encapsulation in a porous hydrogenbonded organic framework, J. Am. Chem. Soc. 141 (2019) 14298–14305. [90] D.J. Bell, M. Wiese, A.A. Schonberger, M. Wessling, Catalytically active hollow fiber membranes with enzyme-embedded metal-organic framework coating, Angew. Chem.-Int. Edit. 59 (2020) 16047–16053. [91] K.V. Plakas, A. Mantza, S.D. Sklari, V.T. Zaspalis, A.J. Karabelas, Heterogeneous fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane, Chem. Eng. J. 373 (2019) 700–708. [92] K. Sakai-Kato, M. Kato, T. Toyo’oka, On-line drug-metabolism system using microsomes encapsulated in a capillary by the sol-gel method and integrated into capillary electrophoresis, Anal. Biochem. 308 (2002) 278–284. [93] E. Jang, K.J. Son, B. Kim, W.G. Koh, Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots, Analyst. 135 (2010) 2871–2878. [94] Q.Q. Qi, B. Yang, H.H. Li, J.J. Bao, H.Y. Li, B.B. Wang, Q. Mei, Platelet microparticles regulate neutrophil extracellular traps in acute pancreatitis, Pancreas 49 (2020) 1099–1103. [95] E.V. Capela, A.I. Valente, J.C.F. Nunes, F.F. Magalhaes, O. Rodriguez, A. Soto, Insights on the laccase extraction and activity in ionic-liquid-based aqueous biphasic systems, Sep. Purif. Technol. 248 (2020). [96] J. Wang, S.S. Wang, Z.J. Li, S.S. Gu, X.Y. Wu, F. Wu, Ultrasound irradiation accelerates the lipase-catalyzed synthesis of methyl caffeate in an ionic liquid, J. Mol. Catal. B-Enzym. 111 (2015) 21–28. [97] A. Gong, D. Zhu, Y.Y. Mei, X.H. Xu, F.A. Wu, J. Wang, Enhanced biocatalysis mechanism under microwave irradiation in isoquercitrin production revealed by circular dichroism and surface plasmon resonance spectroscopy, Bioresour. Technol. 205 (2016) 48–57. [98] B.U. Moon, S. Koster, K.J.C. Wientjes, R.M. Kwapiszewski, A.J.M. Schoonen, B.H. C. Westerink, E. Verpoorte, An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application, Anal. Chem. 82 (2010) 6756–6763. [99] Y.K. Suh, S. Kang, A review on mixing in microfluidics, Micromachines 1 (2010) 82–111. [100] V. Hessel, H. Lowe, F. Schonfeld, Micromixers-a review on passive and active mixing principles, Chem. Eng. Sci. 60 (2005) 2479–2501. [101] Z.Z. Wen, X.H. Yu, S.T. Tu, J.Y. Yan, E. Dahlquist, Intensification of biodiesel synthesis using zigzag micro-channel reactors, Bioresour. Technol. 100 (2009) 3054–3060. [102] P. Madadkar, P.R. Selvaganapathy, R. Ghosh, Continuous flow microreactor for protein PEGylation, Biomicrofluidics 12 (2018) 4. [103] C.T. Zhu, A. Gong, F. Zhang, Y. Xu, S. Sheng, F.A. Wu, J. Wang, Enzyme immobilized on the surface geometry pattern of groove-typed microchannel reactor enhances continuous flow catalysis, J. Chem. Technol. Biotechnol. 94 (2019) 2569–2579. [104] A.T. Pedersen, G. Rehn, J.M. Woodley, Oxygen transfer rates and requirements in oxidative biocatalysis, Comput. Aided Chem. Eng. 37 (2015) 2111–2116. [105] J.M. Bolivar, A. Mannsberger, M.S. Thomsen, G. Tekautz, B. Nidetzky, Process intensification for O-2-dependent enzymatic transformations in continuous single-phase pressurized flow, Biotechnol. Bioeng. 116 (2019) 503–514. [106] L. Vobecka, L. Ticha, A. Atanasova, Z. Slouka, P. Hasal, M. Pribyl, Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment, Chem. Eng. J. 396 (2020) 125236. [107] R.H. Ringborg, A. Toftgaard Pedersen, J.M. Woodley, Automated determination of oxygen-dependent enzyme kinetics in a tube-in-tube flow reactor, ChemCatChem 9 (2017) 3285–3288. [108] M.L. Yang, K. Loubiere, N. Dietrich, C. Le Men, C. Gourdon, G. Hebrard, Local investigations onthe gas-liquid mass transfer aroundTaylor bubbles flowingin a meandering millimetric square channel, Chem. Eng. Sci. 165 (2017) 192–203. [109] M. Nemeth, F. Ender, A. Poppe, Heat and mass transfer reduced order modeling approach of droplet microreactor based Lab-on-a-Chip devices, Microelectron. J. 46 (2015) 1152–1161. [110] G. Laudadio, F. Tieves, E. Fernandez-Fueyo, T. Noel, I.W.C.E. Arends, F. Hollmann, Biocatalytic synthesis of the green note trans-2-hexenal in a continuous-flow microreactor, Beilstein J. Org. Chem. 14 (2018) 697–703. [111] W.L. Xie, M.Y. Huang, Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel, Renew. Energy 158 (2020) 474–486. [112] S. Schroter, K. Schnitzlein, Enzymatic hydrolysis of rapeseed oil by thermomyces lanuginosus lipase: variation of continuous and dispersed phase in a slug flow reactor, Appl. Microbiol. Biotechnol. 102 (2018) 4799–4806. [113] A. Hommes, T. de Wit, G.J.W. Euverink, J. Yue, Enzymatic biodiesel synthesis by the biphasic esterification of oleic acid and 1-butanol in microreactors, Ind. Eng. Chem. Res. 58 (2019) 15432–15444. [114] B. Tomaszewski, A. Schmid, K. Buehler, Biocatalytic production of catechols using a high pressure tube-in-tube segmented flow microreactor, Org. Process Res. Dev. 18 (2014) 1516–1526. [115] X.J. Zhou, C.T. Zhu, Y. Hu, S. You, F.A. Wu, J. Wang, A novel microfluidic aqueous two-phase system with immobilized enzyme enhances cyanidin-3- O-glucoside content in red pigments from mulberry fruits, Biochem. Eng. J. 158 (2020) 107556. [116] Y.Y. Zhang, J.H. Liu, Purification and in situ immobilization of lipase from of a mutant of Trichosporon laibacchii using aqueous two-phase systems, J. Chromatogr. B. 878 (2010) 909–912. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||