[1] G.N. Chen, Y.W. Chi, X.P. Wu, J.P. Duan, N.B. Li, Chemical oxidation of p-hydroxyphenylpyruvic acid in aqueous solution by capillary electrophoresis with an electrochemiluminescence detection system, Anal. Chem. 75(23) (2003) 6602-6607.[2] Y. Huang, X.L. Zhang, L.J. Xu, H.Q. Chen, G.N. Chen, Characterization of keto-enol tautomerism of p-hydroxyphenylpyruvic acid using CE with amperometric detection and spectrometric analysis, J. Sep. Sci. 32(23-24) (2009) 4155-4160.[3] C.Y. Zhang, Chinese Medical Encyclopedia, Biochemistry, Shanghai Science and Technology Press, Shanghai, 1989.[4] Y.W. Chi, J.P. Duan, X.Z. Qi, G.N. Chen, Electrochemical study on the ketoenol tautomerization of p-hydroxyphenylpyruvic acid in aqueous solution, Bioelectrochemistry 60(1-2) (2003) 37-45.[5] W.M. Mu, S.H. Yu, L.J. Zhu, B. Jiang, T. Zhang, Production of 3-phenyllactic acid and 4-hydroxyphenyllactic acid by Pediococcus acidilactici DSM 20284 fermentation, Eur. Food Res. Technol. 235(3) (2012) 581-585.[6] W.M. Mu, Y. Yang, J.H. Jia, T. Zhang, B. Jiang, Production of 4-hydroxyphenyllactic acid by Lactobacillus sp SK007 fermentation, J. Biosci. Bioeng. 109(4) (2010) 369-371.[7] E.J. Lee, P.J. Facchini, Tyrosine aminotransferase contributes to benzylisoquinoline alkaloid biosynthesis in opium poppy, Plant Physiol. 157(3) (2011) 1067-1078.[8] P. Schneider, S. Bouhired, D. Hoffmeister, Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete Tapinella panuoides, Fungal Genet. Biol. 45(11) (2008) 1487-1496.[9] A.S. Kende, J. Lan, J.F. Fan, Total synthesis of a dibromotyrosine alkaloid inhibitor of mycothiol S-conjugate amidase, Tetrahedron Lett. 45(1) (2004) 133-135.[10] Y.F. Bai, H.P. Bi, Y.B. Zhuang, C. Liu, T. Cai, X.N. Liu, X.L. Zhang, T. Liu, Y.H. Ma, Production of salidroside in metabolically engineered Escherichia coli, Sci. Rep. 4(6640) (2014).[11] R. Muzzarelli, P. Iari, W.S. Xia, M. Pinotti, M. Tomasetti, Tyrosinase-mediated quinone tanning of chitinous materials, Carbohydr. Polym. 24(4) (1994) 295-300.[12] M. Gunsior, J. Ravel, G.L. Challis, C.A. Townsend, Engineering p-hydroxyphenylpyruvate dioxygenase to a p-hydroxymandelate synthase and evidence for the proposed benzene oxide intermediate in homogentisate formation, Biochemistry-U. S. 43(3) (2004) 663-674.[13] S. Inoue, K. Okada, H. Tanino, H. Kakoi, A new synthesis of watasenia preluciferin by cyclization of 2-amino-3-benzyl-5-(p-hydroxyphenyl)pyrazine with p-hydroxyphenylpyruvic acid, Chem. Lett. 9(3) (1980) 299-300.[14] C.H. Doy, Alkaline conversion of 4-hydroxyphenylpyruvic acid to 4-hydroxybenzaldehyde, Nature 186(4724) (1960) 529-531.[15] D. Szwajgier, Anticholinesterase activity of selected phenolic acids and flavonoidsinteraction testing in model solutions, Ann. Agric. Environ. Med. 22(4) (2015) 690-694.[16] S.N. Acerbo, W.J. Schubert, F.F. Nord, Investigations on lignins and lignification. XIX.* the mode of incorporation of p-hydroxyphenylpyruvic acid into lignin, J. Am. Chem. Soc. 80(8) (1958) 1990-1992.[17] H.S. Raper, A. Wormall, The tyrosinase-tyrosine reaction. Ⅱ. The theory of deamination, Biochem. J. 19(1) (1925) 84-91.[18] G.C. Du, Y. Song, L. Liu, J.H. Li, J. Chen, Advances in production and application of α-keto acids, J. Food Sci. Biotechnol. 32(11) (2013) 1121-1127.[19] Y.L. Teng, E.L. Scott, A.V. Zeeland, J. Sander, The use of L-lysine decarboxylase as a means to separate amino acids by electrodialysis, Green Chem. 13(3) (2011) 624-630.[20] A.V. Pukin, C.G. Boeriu, E.L. Scott, J. Sanders, M. Franssen, An efficient enzymatic synthesis of 5-aminovaleric acid, J. Mol. Catal. B-Enzym. 65(1-4SI) (2010) 58-62.[21] P. Schadewaldt, F. Adelmeyer, Coupled enzymatic assay for estimation of branchedchain L-amino acid aminotransferase activity with 2-oxo acid substrates, Anal. Biochem. 238(1) (1996) 65-71.[22] T.N. Stekhanova, A novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia, Enzym. Microb. Technol. 96(2017) 127-134.[23] P. Odman, W.B. Wellborn, A.S. Bommarius, An enzymatic process to alphaketoglutarate from L-glutamate:the coupled system L-glutamate dehydrogenase/NADH oxidase, Tetrahedron-Asymmetry 15(18) (2004) 2933-2937.[24] L. Liu, G.S. Hossain, H.D. Shin, J.H. Li, G.C. Du, J. Chen, One-step production of α-ketoglutaric acid from glutamic acid with an engineered L-amino acid deaminase from Proteus mirabilis, J. Biotechnol. 164(1) (2013) 97-104.[25] P.Q. Niu, X.X. Dong, Y.C. Wang, L.M. Liu, Enzymatic production of alpha-ketoglutaric acid from L-glutamic acid via L-glutamate oxidase, J. Biotechnol. 179(1) (2014) 56-62.[26] G.S. Hossain, J.H. Li, H.D. Shin, G.C. Du, M. Wang, L. Liu, J. Chen, One-step biosynthesis of alpha-keto-gamma-methylthiobutyric acid from L-methionine by an Escherichia coli whole-cell biocatalyst expressing an engineered L-amino acid deaminase from Proteus vulgaris, PloS One 9(e114291) (2014).[27] Y.C. Ju, S.L. Tong, Y.X. Gao, W. Zhao, Q. Liu, Q. Gu, J. Xu, L.W. Niu, M.K. Teng, H.H. Zhou, Crystal structure of a membrane-bound L-amino acid deaminase from Proteus vulgaris, J. Struct. Biol. 195(3) (2016) 306-315.[28] G.S. Hossain, J.H. Li, H.D. Shin, R.R. Chen, G.C. Du, L. Liu, J. Chen, Bioconversion of L-glutamic acid to alpha-ketoglutaric acid by an immobilized whole-cell biocatalyst expressing L-amino acid deaminase from Proteus mirabilis, J. Biotechnol. 169(2014) 112-120.[29] A.Q. Zhao, X.Q. Hu, Y. Li, C. Chen, X.Y. Wang, Extracellular expression of glutamate decarboxylase B in Escherichia coli to improve gamma-aminobutyric acid production, AMB Express 6(55) (2016).[30] Z.X. Dong, J. Zhang, G.C. Du, J. Chen, H.Z. Li, B.H. Lee, Periplasmic export of bile salt hydrolase in Escherichia coli by the twin-arginine signal peptides, Appl. Biochem. Biotechnol. 177(2) (2015) 458-471.[31] E. Takahashi, K. Ito, T. Yoshimoto, Cloning of L-amino acid deaminase gene from Proteus vulgaris, Biosci. Biotechnol. Biochem. 63(12) (1999) 2244-2247.[32] J.O. Baek, J.W. Seo, O. Kwon, S.I. Seong, I.H. Kim, C.H. Kim, Expression and characterization of a second L-amino acid deaminase isolated from Prstructureoteus mirabilis in Escherichia coli, J. Basic Microbiol. 51(2) (2011) 129-135.[33] Y. Song, J.H. Li, H.D. Shin, G.C. Du, L. Liu, J. Chen, One-step biosynthesis of α-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris, Sci. Rep. 5(12614) (2015).[34] Y. Hou, G.S. Hossain, J.H. Li, H.D. Shin, L. Liu, G.C. Du, Production of phenylpyruvic acid from L-phenylalanine using an L-amino acid deaminase from Proteus mirabilis:comparison of enzymatic and whole-cell biotransformation approaches, Appl. Microbiol. Biotechnol. 99(20) (2015) 8391-8402.[35] F.J. Tooke, M. Babot, G. Chandra, G. Buchanan, T. Palmer, A unifying mechanism for the biogenesis of membrane proteins co-operatively integrated by the Sec and Tat pathways, eLIFE 6(e26577) (2017).[36] S. Wagner, L. Baars, A.J. Ytterberg, A. Klussmeier, C.S. Wagner, O. Nord, P.A. Nygren, K.J.V. Wijk, J.W.D. Gier, Consequence of membrane protein overexpression in Escherichia coli, Mol. Cell. Proteomics 6(9) (2007) 1527-1550.[37] S. Wagner, M.M. Klepsch, S. Schlegel, A. Appel, R. Draheim, M. Tarry, M. Hogbom, K.J.V. Wijk, D.J. Slotboom, J.O. Persson, J.W.D. Gier, Tuning Escherichia coli for membrane protein overexpression, Proc. Natl. Acad. Sci. U. S. A. 105(38) (2008) 14371-14376.[38] A.J. Cooper, J.Z. Ginos, A. Meister, Synthesis and properties of the alpha-keto acids, Chem. Rev. 83(3) (1983) 321-358.[39] G. Billek, Eine neue synthese der 4-hydroxyphenylbrenztraubensaure. 2. zur synthese der phenylbrenztraubensauren, Monatsh. Chem. 92(2) (1961) 335-342.[40] A. Meister, Enzymatic preparation of alpha-keto acids, J. Biol. Chem. 197(1) (1952) 309-317.[41] C.A. Bunton, Oxidation of alpha-diketones and alpha-keto-acids by hydrogen peroxide, Nature (London) 163(1949) 444. |