[1] N. Shurpali, A.K. Agarwal, V.K. Srivastava, Introduction to Greenhouse Gas Emissions:Challenges, Technologies and Solutions, Greenhouse Gas Emissions, Energy, Environment, and Sustainability, Springer, Singapore, 2018. [2] M. An, Q.J. Guo, J.J. Ma, X.D. Hu, Chemical-looping gasification of coal with CuFe2O4 oxygen carriers:The reaction characteristics and structural evolution, Can. J. Chem. Eng. 98(7) (2020) 1512-1524. [3] L.H. Shen, M. Zheng, J. Xiao, R. Xiao, A mechanistic investigation of a calciumbased oxygen carrier for chemical looping combustion, Combust. Flame 154(3) (2008) 489-506. [4] F. García-Labiano, L.F. de Diego, J. Adánez, A. Abad, P. Gayán, Temperature variations in the oxygen carrier particles during their reduction and oxidation in a chemical-looping combustion system, Chem. Eng. Sci. 60(3) (2005) 851-862. [5] A. Abad, T. Mattisson, A. Lyngfelt, M. Johansson, The use of iron oxide as oxygen carrier in a chemical-looping reactor, Fuel 86(7-8) (2007) 1021-1035. [6] C.Q. Dong, J.J. Zhang, L. Shan, Y.P. Yang, The use of iron oxide as an oxygen carrier in chemical looping combustion taking CO and biomass gas as fuels, in:2009 International Conference on Sustainable Power Generation and Supply. Nanjing, China, IEEE. (2009) 1-5. [7] Q.J. Guo, Y. Cheng, Y.Z. Liu, W.H. Jia, H.J. Ryu, Coal chemical looping gasification for syngas generation using an iron-based oxygen carrier, Ind. Eng. Chem. Res. 53(1) (2014) 78-86. [8] C.L. Liu, C. Ding, X.G. Hao, C.C. Li, X.W. An, P.F. Wang, B.L. Zhang, F.F. Gao, C.J. Peng, G.Q. Guan, Molecular dynamics simulation and experimental investigation of furfural separation from aqueous solutions via PEBA-2533 membranes, Sep. Purif. Technol. 207(2018) 42-50. [9] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, ReaxFF:A reactive force field for hydrocarbons, J. Phys. Chem. A 105(41) (2001) 9396-9409. [10] M. Zheng, X.X. Li, F.G. Nie, L. Guo, Investigation of overall pyrolysis stages for Liulin bituminous coal by large-scale ReaxFF molecular dynamics, Energy Fuels 31(4) (2017) 3675-3683. [11] X. Zhang, C. Fu, Y. Xia, Y. Duan, Y. Li, Z. Wang, Y. Jiang, H. Li, Atomistic origin of the complex morphological evolution of aluminum nanoparticles during oxidation:A chain-like oxide nucleation and growth mechanism, ACS Nano 13(3) (2019) 3005-3014. [12] N. Wang, J.H. Peng, A.M. Pang, T.S. He, F. Du, A. Jaramillo-Botero, Thermodynamic simulation of the RDX-aluminum interface using ReaxFF molecular dynamics, J. Phys. Chem. C 121(27) (2017) 14597-14610. [13] G. Barcaro, S. Monti, Modeling generation and growth of iron oxide nanoparticles from representative precursors through ReaxFF molecular dynamics, Nanoscale 12(5) (2020) 3103-3111. [14] B. Jeon, S.K.R.S. Sankaranarayanan, A.C.T. van Duin, S. Ramanathan, Influence of surface orientation and defects on early-stage oxidation and ultrathin oxide growth on pure copper, Phil. Mag. 91(32) (2011) 4073-4088. [15] M.J. Gao, X.X. Li, C.X. Ren, Z. Wang, Y. Pan, L. Guo, Construction of a multicomponent molecular model of fugu coal for ReaxFF-MD pyrolysis simulation, Energy Fuels 33(4) (2019) 2848-2858. [16] M. Zheng, X.X. Li, J. Liu, Z. Wang, X.M. Gong, L. Guo, W.L. Song, Pyrolysis of Liulin coal simulated by GPU-based ReaxFF MD with cheminformatics analysis, Energy Fuels 28(1) (2014) 522-534. [17] L. Zhu, Y.D. He, L.L. Li, P.B. Wu, Tech-economic assessment of secondgeneration CCS:Chemical looping combustion, Energy 144(2018) 915-927. [18] Z. Kun, D.M. He, J. Guan, Q.M. Zhang, Thermodynamic analysis of chemical looping gasification coupled with lignite pyrolysis, Energy 166(2019) 807-818. [19] J. Haus, E.U. Hartge, S. Heinrich, J. Werther, Dynamic flowsheet simulation for chemical looping combustion of methane, Int. J. Greenh. Gas Control. 72(2018) 26-37. [20] D.A. Chisalita, A.M. Cormos, Dynamic simulation of fluidized bed chemical looping combustion process with iron based oxygen carrier, Fuel 214(2018) 436-445. [21] R.L. Pruett, Industrial organic chemicals through utilization of synthesis gas, Ann. N. Y. Acad. Sci. 295(1) (1977) 239-248. [22] T. Abe, New process for methylmethacrylate MGC's New ACH Process for MMA, Stud. Surf. Sci. Catal. 121(1999) 461-464. [23] B. Li, R.Y. Yan, L. Wang, Y.Y. Diao, Z.X. Li, S.J. Zhang, Synthesis of methyl methacrylate by aldol condensation of methyl propionate with formaldehyde over acid-base bifunctional catalysts, Catal. Lett. 143(8) (2013) 829-838. [24] J.E. Schwendeman, K.B. Wagener, Modeling ethylene/methyl methacrylate and ethylene/methacrylic acid copolymers using acyclic diene metathesis chemistry, Macromolecules 37(11) (2004) 4031-4037. [25] C.L. Peng, G.S. Wang, L. Qin, S.H. Luo, F.F. Min, X. Zhu, Molecular dynamics simulation of NH4-montmorillonite interlayer hydration:Structure, energetics, and dynamics, Appl. Clay Sci. 195(2020) 105657. [26] A. Gooneie, J. Gonzalez-Gutierrez, C. Holzer, Atomistic modelling of confined polypropylene chains between ferric oxide substrates at melt temperature, Polymers (Basel) 8(10) (2016) E361. [27] Y.Z. Liu, W.H. Jia, Q.J. Guo, H. Ryu, Effect of gasifying medium on the coal chemical looping gasification with CaSO4 as oxygen carrier, Chin. J. Chem. Eng. 22(11-12) (2014) 1208-1214. [28] F. Castro-Marcano, A.M. Kamat, M.F. Russo, A.C.T. van Duin, J.P. Mathews, Combustion of an Illinois No. 6 coal char simulated using an atomistic char representation and the ReaxFF reactive force field, Combust. Flame 159(3) (2012) 1272-1285. [29] Q.J. Guo, M.M. Yang, Y.Z. Liu, Q.Q. Yang, Y.P. Zhang, Multicycle investigation of a Sol-gel-derived Fe2O3/ATP oxygen carrier for coal chemical looping combustion, AIChE J. 62(4) (2016) 996-1006. [30] Z. Huang, F. He, Y.P. Feng, K. Zhao, A.Q. Zheng, S. Chang, G.Q. Wei, Z.L. Zhao, H. B. Li, Biomass char direct chemical looping gasification using NiO-modified iron ore as an oxygen carrier, Energy Fuels 28(1) (2014) 183-191. [31] X.H. Pei, B.S. He, L.B. Yan, C.J. Wang, W.N. Song, J.G. Song, Process simulation of oxy-fuel combustion for a 300 MW pulverized coal-fired power plant using Aspen Plus, Energy Convers. Manag. 76(2013) 581-587. [32] Z.Y. Liu, Y.T. Fang, S.P. Deng, J.J. Huang, J.T. Zhao, Z.H. Cheng, Simulation of pressurized ash agglomerating fluidized bed gasifier using ASPEN PLUS, Energy Fuels 26(2) (2012) 1237-1245. [33] W. Tao, H.W. Cheng, W.L. Yao, X.G. Lu, Q.H. Zhu, G.S. Li, Z.F. Zhou, Syngas production by CO2 reforming of coke oven gas over Ni/La2O3-ZrO2 catalysts, Int. J. Hydrog. Energy 39(32) (2014) 18650-18658. [34] W.L. Luyben, Design and control of the dry methane reforming process, Ind. Eng. Chem. Res. 53(37) (2014) 14423-14439. [35] N.A.K. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Catalyst design for dry reforming of methane:Analysis review, Renew. Sustain. Energy Rev. 82(2018) 2570-2585. [36] L. Sun, R. Smith, Rectisol wash process simulation and analysis, J. Clean. Prod. 39(2013) 321-328. [37] F.S. Xiao, M. Ichikawa, ChemInform abstract:catalytic performance and mechanism for oxygenated compound formation for ethylene hydroformylation over supported Ru-M bimetallic carbonyl cluster-derived catalysts, ChemInform 25(39) (2010) 245-256. [38] G.S. Mironov, M.I. Farberov, Commercial methods of synthesis of α, β-unsaturated aldehydes and ketones, Russ. Chem. Rev. 33(6) (1964) 311-319. [39] A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications-A review, Energy 35(6) (2010) 2610-2628. [40] Z. Cui, W. de Tian, X. Wang, C.Y. Fan, Q.J. Guo, H.F. Xu, Safety integrity level analysis of fluid catalytic cracking fractionating system based on dynamic simulation, J. Taiwan Inst. Chem. Eng. 104(2019) 16-26. [41] W.D. Tian, T.Z. Du, S.J. Mu, HAZOP analysis-based dynamic simulation and its application in chemical processes, Asia-Pac. J. Chem. Eng. 10(6) (2015) 923-935. [42] Z. Cui, W. de Tian, H. Qin, X. Wang, W.Y. Zhao, Optimal design and control of Eastman organic wastewater treatment process, J. Clean. Prod. 198(2018) 333-350. |