[1] G.P. Peters, R.M. Andrew, J.G. Canadell, P. Friedlingstein, R.B. Jackson, J.I. Korsbakken, C. Quéré, A. Peregon, Carbon dioxide emissions continue to grow amidst slowly emerging climate policies, Nat. Clim. Chang. 10(1) (2020) 3-6. [2] Global CO2 Emissions in 2019, IEA, 2019. https://www.iea.org/articles/globalco2-emissions-in-2019. [3] K.Y. Dong, X.C. Dong, Q.Z. Jiang, How renewable energy consumption lower global CO2 emissions? Evidence from countries with different income levels, World Econ. 43(6) (2020) 1665-1698. [4] K. Yoro, P. Sekoai, The potential of CO2 capture and storage technology inSouth Africa's coal-fired thermal power plants, Environments 3(4) (2016) 24. [5] V. Tola, G. Cau, F. Ferrara, A. Pettinau, CO2 emissions reduction from coal-fired power generation:A techno-economic comparison, J. Energy Resour. Technol. 138(2016) 1602-1610. [6] X.T. Liu, J.F. Shi, L. He, X.X. Ma, S.S. Xu, Modification of CaO-based sorbents prepared from calcium acetate for CO2 capture at high temperature, Chin. J. Chem. Eng. 25(5) (2017) 572-580. [7] C. Luo, Y. Zheng, N. Ding, Q.L. Wu, G. Bian, C.G. Zheng, Development and performance of CaO/La2O3 sorbents during calcium looping cycles for CO2 capture, Ind. Eng. Chem. Res. 49(22) (2010) 11778-11784. [8] D.L. He, C.L. Qin, Z.H. Zhang, S. Pi, J.Y. Ran, G. Pu, Investigation of Y2O3/MxOyincorporated Ca-based sorbents for efficient and stable CO2 capture at high temperature, Ind. Eng. Chem. Res. 57(34) (2018) 11625-11635. [9] H. Wang, Z.S. Li, Y. Li, N.S. Cai, Reduced-order model for CaO carbonation kinetics measured using micro-fluidized bed thermogravimetric analysis, Chem. Eng. Sci. 229(2021) 116039. [10] J.M. Valverde, S. Medina, Reduction of calcination temperature in the calcium looping process for CO2 capture by using helium:In situ XRD analysis, ACS Sustain. Chem. Eng. 4(12) (2016) 7090-7097. [11] Y. Li, Z.S. Li, H. Wang, N.S. Cai, CaO carbonation kinetics determined using micro-fluidized bed thermogravimetric analysis, Fuel 264(2020) 116823. [12] D.L. He, Z.L. Ou, C.L. Qin, T. Deng, J.J. Yin, G. Pu, Understanding the catalytic acceleration effect of steam on CaCO3 decomposition by density function theory, Chem. Eng. J. 379(2020) 122348. [13] M.F. Fu, C.T. Li, P. Lu, L. Qu, M.Y. Zhang, Y. Zhou, M.G. Yu, Y. Fang, A review on selective catalytic reduction of NOx by supported catalysts at 100-300℃-Catalysts, mechanism, kinetics, Catal. Sci. Technol. 4(1) (2014) 14-25. [14] S.S. Feng, M.D. Zhou, F. Han, Z.X. Zhong, W.H. Xing, A bifunctional MnOx@PTFE catalytic membrane for efficient low temperature NOx-SCR and dust removal, Chin. J. Chem. Eng. 28(5) (2020) 1260-1267. [15] M.W. Wang, W.Y. Meng, J. Ren, K. Zhang, F.L. Yang, F.Q. Cheng, Analysis and diagnosis of SCR denitrification system in 330 MW lean coal-fired boiler, Clean Coal Technol. 23(5) (2017) 98-104. [16] H. Li, K.H. Han, H.T. Liu, C.M. Lu, Experimental and modeling study on de-NOx characteristics of selective non-catalytic reduction in O2/CO2 atmosphere, Chin. J. Chem. Eng. 22(8) (2014) 943-949. [17] T. Ma, Y. Ru, K. Li, J. Hui, H. Zhu, M. Li, Study on deep denitrification performance of SNCR+SCR for a 300 MW CFB boiler, Clean Coal Technol. 26(2020) 99-105. [18] X. Cheng, M. Zhang, P. Sun, L. Wang, Z. Wang, C. Ma, Nitrogen oxides reduction by carbon monoxide over semi-coke supported catalysts in a simulated rotary reactor:Reaction performance under dry conditions, Green Chem. 18(2016) 5305-5324. [19] M. Kacimi, M. Ziyad, L.F. Liotta, Cu on amorphous AlPO4:Preparation, characterization and catalytic activity in NO reduction by CO in presence of oxygen, Catal. Today 241(2015) 151-158. [20] P. Xiao, R.C. Davis, X.Y. Ouyang, J.L. Li, A. Thomas, S.L. Scott, J.J. Zhu, Mechanism of NO reduction by CO over Pt/SBA-15, Catal. Commun. 50(2014) 69-72. [21] X. Wang, X. Wu, N. Maeda, A. Baiker, Striking activity enhancement of gold supported on Al-Ti mixed oxide by promotion with ceria in the reduction of NO with CO, Appl. Catal. B Environ. 209(2017) 62-68. [22] X. Liao, J. Shao, S. Zhang, X. Li, H. Yang, X. Wang, H. Chen, Effects of CO2 and CO on the reduction of NO over calcined limestone or char in oxy-fuel fluidized bed combustion, IET Renew Power Gener. 13(2019) 1633-1640. [23] D. Allen, A.N. Hayhurst, The effect of CaO on emissions of nitric oxide from a fluidised bed combustor, Fuel 158(2015) 898-907. [24] J. Krzywanski, T. Czakiert, T. Shimizu, I. Majchrzak-Kuceba, Y. Shimazaki, A. Zylka, K. Grabowska, M. Sosnowski, NOx emissions from regenerator of calcium looping process, Energy Fuels 32(5) (2018) 6355-6362. [25] C.Y. Gao, T. Higuchi, A. Yoshizawa, T. Shimizu, H. Kim, L.Y. Li, Role of char in NOx formation during coal combustion at a regenerator temperature of calcium looping process, Fuel 121(2014) 319-326. [26] J. Hilz, M. Helbig, M. Haaf, A. Daikeler, J. Ströhle, B. Epple, Investigation of the fuel influence on the carbonate looping process in 1 MWth scale, Fuel Process. Technol. 169(2018) 170-177. [27] C.Y. Gao, T. Takahashi, H. Narisawa, A. Yoshizawa, T. Shimizu, H. Kim, L.Y. Li, Coal combustion under calcium looping process conditions, Fuel 127(2014) 38-46. [28] T. Shimizu, Y. Matsuura, A. Yoshizawa, Y. Shimazaki, T. Shimoda, H. Kim, L. Li, Reduction of NOx by char under condition for carbonator of calcium looping CO2 capture process, J. Jpn. Inst. Energy 94(2015) 841-850. [29] W. Zhang, Y.J. Li, X.T. Ma, Y.Q. Qian, Z.Y. Wang, Simultaneous NO/CO2 removal performance of biochar/limestone in calcium looping process, Fuel 262(2020) 116428. [30] W. Zhang, Y.J. Li, B.Y. Li, Y.Z. Wang, Y.Q. Qian, Z.Y. Wang, Simultaneous NO/CO2 removal by Cu-modified biochar/CaO in carbonation step of calcium looping process, Chem. Eng. J. 392(2020) 123659. [31] H. Wang, Z.S. Li, N.S. Cai, Multiscale model for steam enhancement effect on the carbonation of CaO particle, Chem. Eng. J. 394(2020) 124892. [32] J. Chen, L. Duan, Z. Sun, Accurate control of cage-like CaO hollow microspheres for enhanced CO2 capture in calcium looping via a template-assisted synthesis approach, Environ. Sci. Technol. 53(4) (2019) 2249-2259. [33] T. Furusawa, M. Tsunoda, M. Tsujimura, T. Adschiri, Nitric oxide reduction by char and carbon monoxide:Fundamental kinetics of nitric oxide reduction in fluidized bed combustion of coal, Fuel 64(1985) 1306-1309. [34] L.K. Chan, A.F. Sarofim, J.M. Beér, Kinetics of the NO-carbon reaction at fluidized bed combustor conditions, Combust. Flame 52(1983) 37-45. [35] A. Coppola, F. Montagnaro, P. Salatino, F. Scala, Fluidized bed calcium looping:The effect of SO2 on sorbent attrition and CO2 capture capacity, Chem. Eng. J. 207-208(2012) 445-449. [36] A. Coppola, F. Montagnaro, P. Salatino, F. Scala, Attrition of limestone during fluidized bed calcium looping cycles for CO2 capture, Combust. Sci. Technol. 184(7-8) (2012) 929-941. [37] A. Charitos, N. Rodríguez, C. Hawthorne, M. Alonso, M. Zieba, B. Arias, G. Kopanakis, G. Scheffknecht, J.C. Abanades, Experimental validation of the calcium looping CO2 capture process with two circulating fluidized bed carbonator reactors, Ind. Eng. Chem. Res. 50(16) (2011) 9685-9695. [38] A. Coppola, F. Scala, L. Gargiulo, P. Salatino, A twin-bed test reactor for characterization of calcium looping sorbents, Powder Technol. 316(2017) 585-591. [39] J. Chen, L.B. Duan, F. Donat, C.R. Müller, E.J. Anthony, M.H. Fan, Self-activated, nanostructured composite for improved CaL-CLC technology, Chem. Eng. J. 351(2018) 1038-1046. [40] J. Chen, L.B. Duan, T. Shi, R.Y. Bian, Y.X. Lu, F. Donat, E.J. Anthony, A facile onepot synthesis of CaO/CuO hollow microspheres featuring highly porous shells for enhanced CO2 capture in a combined Ca-Cu looping process via a templatefree synthesis approach, J. Mater. Chem. A 7(37) (2019) 21096-21105. [41] L. Dong, S.Q. Gao, W.L. Song, G.W. Xu, Experimental study of NO reduction over biomass char, Fuel Process. Technol. 88(7) (2007) 707-715. [42] E. Kadossov, U. Burghaus, Adsorption kinetics and dynamics of CO, NO, and CO2 on reduced CaO(100), J. Phys. Chem. C 112(19) (2008) 7390-7400. [43] T. Shimizu, K. Ito, S. Shizuno, R. Houshito, T. Shimoda, H. Tsukahara, L.Y. Li, Reaction pathways of NOX and N2O over CaO in the presence of char under carbonator conditions of calcium-looping CO2 capture process, J. Jpn. Inst. Energy 95(12) (2016) 1115-1124. [44] T. Shimizu, T. Shimoda, R. Houshito, H. Kato, O. Hara, L.Y. Li, N2O reduction and NOx adsorption in carbonator of calcium looping CO2 capture process, J. Jpn. Inst. Energy 96(7) (2017) 228-238. [45] F. Voigts, F. Bebensee, S. Dahle, K. Volgmann, W. Maus-Friedrichs, The adsorption of CO2 and CO on Ca and CaO films studied with MIES, UPS and XPS., Surf. Sci. 603(1) (2009) 40-49. |