[1] A. Manthiram, X.W. Yu, S.F. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2(4) (2017) 1-16. [2] J.C. Bachman, S. Muy, A. Grimaud, H.H. Chang, N. Pour, S.F. Lux, O. Paschos, F. Maglia, S. Lupart, P. Lamp, L. Giordano, Y. Shao-Horn, Inorganic solid-state electrolytes for lithium batteries:Mechanisms and properties governing ion conduction, Chem. Rev. 116(1) (2016) 140-162. [3] J.B. Goodenough, P. Singh, Review-solid electrolytes in rechargeable electrochemical cells, J. Electrochem. Soc. 162(14) (2015) A2387-A2392. [4] G.L. Zhu, C.Z. Zhao, J.Q. Huang, C.X. He, J. Zhang, S.H. Chen, L. Xu, H. Yuan, Q. Zhang, Fast charging lithium batteries:Recent progress and future prospects, Small 15(15) (2019) 1805389. [5] W.L. Cai, Y.X. Yao, G.L. Zhu, C. Yan, L.L. Jiang, C.X. He, J.Q. Huang, Q. Zhang, A review on energy chemistry of fast-charging anodes, Chem. Soc. Rev. 49(12) (2020) 3806-3833. [6] K.J. Kim, M. Balaish, M. Wadaguchi, L.P. Kong, J.L.M. Rupp, Solid state batteries:solid-state Li-metal batteries:challenges and horizons of oxide and sulfide solid electrolytes and their interfaces, Adv. Energy Mater. 11(1) (2021) 2170002. [7] H. Yuan, J. Liu, Y. Lu, C.Z. Zhao, X.B. Cheng, H.X. Nan, Q.B. Liu, J.Q. Huang, Q. Zhang, Toward Practical All-solid-state Batteries with Sulfide Electrolyte:A Review, Chem. Res. Chin. Univ. 36(3) (2020) 377-385. [8] Y. Li, D.C. Zhang, X.J. Xu, Z.S. Wang, Z.B. Liu, J.D. Shen, J. Liu, M. Zhu, Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries, J. Energy Chem. 60(2021) 32-60. [9] J. Xu, L. Liu, N. Yao, F. Wu, H. Li, L. Chen, Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries, Mater. Today Nano 8(2019) 100048. [10] L.L. Liu, J.R. Xu, S. Wang, F. Wu, H. Li, L.Q. Chen, Practical evaluation of energy densities for sulfide solid-state batteries, eTransportation 1(2019) 100010. [11] C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, J.J. Zhang, Recent advances in allsolid-state rechargeable lithium batteries, Nano Energy 33(2017) 363-386. [12] L. Fan, S.Y. Wei, S.Y. Li, Q. Li, Y.Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries, Adv. Energy Mater. 8(11) (2018) 1702657. [13] K. Kerman, A. Luntz, V. Viswanathan, Y.M. Chiang, Z.B. Chen, Practical challenges hindering the development of solid state Li ion batteries, J. Electrochem. Soc. 164(7) (2017) A1731-A1744. [14] Z.Z. Zhang, Y.J. Shao, B. Lotsch, Y.S. Hu, H. Li, J. Janek, L.F. Nazar, C.W. Nan, J. Maier, M. Armand, L.Q. Chen, New horizons for inorganic solid state ion conductors, Energy Environ. Sci. 11(8) (2018) 1945-1976. [15] L.E. Marbella, S. Zekoll, J. Kasemchainan, S.P. Emge, P.G. Bruce, C.P. Grey, 7Li NMR chemical shift imaging to detect microstructural growth of lithium in all-solid-state batteries, Chem. Mater. 31(2019) 2762-2769. [16] S.P. Ong, Y.F. Mo, W.D. Richards, L. Miara, H.S. Lee, G. Ceder, Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M=Ge, Si, Sn, Al or P, and X=O, S or Se) family of superionic conductors, Energy Environ. Sci. 6(1) (2013) 148-156. [17] J.F. Wu, X. Guo, Origin of the low grain boundary conductivity in lithium ion conducting perovskites:Li3xLa0.67-xTiO3, PCCP 19(8) (2017) 5880-5887. [18] M.Y. Jia, N. Zhao, H.Y. Huo, X.X. Guo, Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries, Electrochem. Energy Rev. 3(4) (2020) 656-689. [19] M.Y. Jia, Z.J. Bi, C. Shi, N. Zhao, X.X. Guo, Air-stable dopamine-treated garnet ceramic particles for high-performance composite electrolytes, J. Power Sources 486(2021) 229363. [20] Y.Z. Zhu, X.F. He, Y.F. Mo, Origin of outstanding stability in the lithium solid electrolyte materials:Insights from thermodynamic analyses based on firstprinciples calculations, ACS Appl. Mater. Interfaces 7(42) (2015) 23685- 23693. [21] H.J. Deiseroth, S.T. Kong, H. Eckert, J. Vannahme, C. Reiner, T. Zaiss, M. Schlosser, Li6PS5X:A class of crystalline Li-rich solids with an unusually high Li+ mobility, Angew. Chem. Int. Ed. Engl. 47(4) (2008) 755-758. [22] X.Y. Yao, D. Liu, C.S. Wang, P. Long, G. Peng, Y.S. Hu, H. Li, L.Q. Chen, X.X. Xu, High-energy all-solid-state lithium batteries with ultralong cycle life, Nano Lett. 16(11) (2016) 7148-7154. [23] Y. Wang, W.D. Richards, S.P. Ong, L.J. Miara, J.C. Kim, Y.F. Mo, G. Ceder, Design principles for solid-state lithium superionic conductors, Nat. Mater. 14(10) (2015) 1026-1031. [24] A. Hayashi, M. Tatsumisago, Invited paper:Recent development of bulk-type solid-state rechargeable lithium batteries with sulfide glass-ceramic electrolytes, Electron. Mater. Lett. 8(2) (2012) 199-207. [25] K. Xiong, R.C. Longo, S. Kc, W. Wang, K. Cho, Behavior of Li defects in solid electrolyte lithium thiophosphate Li7P3S11:A first principles study, Comput. Mater. Sci. 90(2014) 44-49. [26] M. Tatsumisago, M. Nagao, A. Hayashi, Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries, J. Asian Ceram. Soc. 1(1) (2013) 17-25. [27] M. Nagao, H. Kitaura, A. Hayashi, M. Tatsumisago, Characterization of allsolid-state lithium secondary batteries using CuxMo6S8-y electrode and Li2SP2S5 solid electrolyte, J. Power Sources 189(1) (2009) 672-675. [28] A. Hayashi, K. Minami, S. Ujiie, M. Tatsumisago, Preparation and ionic conductivity of Li7P3S11-z glass-ceramic electrolytes, J. Non-Cryst. Solids 356(44-49) (2010) 2670-2673. [29] A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago, T. Minami, Preparation of Li2S-P2S5 amorphous solid electrolytes by mechanical milling, J. Am. Ceram. Soc. 84(2) (2004) 477-479. [30] Y. Seino, M. Nakagawa, M. Senga, H. Higuchi, K. Takada, T. Sasaki, Analysis of the structure and degree of crystallisation of 70Li2S-30P2S5 glass ceramic, J. Mater. Chem. A 3(6) (2015) 2756-2761. [31] R. Mercier, J.P. Malugani, B. Fahys, J. Douglande, G. Robert, Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li4P2S6, J. Solid State Chem. 43(2) (1982) 151-162. [32] Y. Seino, T. Ota, K. Takada, A. Hayashi, M. Tatsumisago, A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries, Energy Environ. Sci. 7(2) (2014) 627-631. [33] M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, Preparation of sulfide solid electrolytes in the Li2S-P2S5 system by a liquid phase process, Inorg. Chem. Front. 5(2) (2018) 501-508. [34] Y.X. Wang, D.P. Lu, M. Bowden, P.Z. El Khoury, K.S. Han, Z.D. Deng, J. Xiao, J.G. Zhang, J. Liu, Mechanism of formation of Li7P3S11 solid electrolytes through liquid phase synthesis, Chem. Mater. 30(3) (2018) 990-997. [35] S. Ito, M. Nakakita, Y. Aihara, T. Uehara, N. Machida, A synthesis of crystalline Li7P3S11 solid electrolyte from 1, 2-dimethoxyethane solvent, J. Power Sources 271(2014) 342-345. [36] R.C. Xu, X.L. Wang, S.Z. Zhang, Y. Xia, X.H. Xia, J.B. Wu, J.P. Tu, Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries, J. Power Sources 374(2018) 107-112. [37] R.C. Xu, X.H. Xia, Z.J. Yao, X.L. Wang, C.D. Gu, J.P. Tu, Preparation of Li7P3S11 glass-ceramic electrolyte by dissolution-evaporation method for all-solidstate lithium ion batteries, Electrochim. Acta 219(2016) 235-240. [38] R. Maniwa, M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, Synthesis of sulfide solid electrolytes from Li2S and P2S5 in anisole, J. Mater. Chem. A 9(1) (2021) 400-405. [39] M.B. Preefer, J.H. Grebenkemper, F. Schroeder, J.D. Bocarsly, K. Pilar, J.A. Cooley, W. Zhang, J. Hu, S. Misra, F. Seeler, K. Schierle-Arndt, R. Seshadri, Rapid and tunable assisted-microwave preparation of glass and glass-ceramic thiophosphate ''Li7P3S11" Li-ion conductors, ACS Appl. Mater. Interfaces 11(45) (2019) 42280-42287. [40] M. Calpa, N.C. Rosero-Navarro, A. Miura, K. Tadanaga, Instantaneous preparation of high lithium-ion conducting sulfide solid electrolyte Li7P3S11 by a liquid phase process, RSC Adv. 7(73) (2017) 46499-46504. [41] C. Dietrich, D.A. Weber, S.J. Sedlmaier, S. Indris, S.P. Culver, D. Walter, J. Janek, W.G. Zeier, Lithium ion conductivity in Li2S-P2S5 glasses-building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7, J. Mater. Chem. A 5(34) (2017) 18111-18119. [42] M. Tatsumisago, A. Hayashi, Superionic glasses and glass-ceramics in the Li2SP2S5 system for all-solid-state lithium secondary batteries, Solid State Ionics 225(2012) 342-345. [43] Q. Zhang, D.X. Cao, Y. Ma, A. Natan, P. Aurora, H.L. Zhu, Solid-state batteries:Sulfide-based solid-state electrolytes:Synthesis, stability, and potential for all-solid-state batteries, Adv. Mater. 31(44) (2019) 1970311. [44] S. Ujiie, T. Inagaki, A. Hayashi, M. Tatsumisago, Conductivity of 70Li2S·30P2S5 glasses and glass-ceramics added with lithium halides, Solid State Ionics 263(2014) 57-61. [45] I.H. Chu, H. Nguyen, S. Hy, Y.C. Lin, Z.B. Wang, Z.H. Xu, Z. Deng, Y.S. Meng, S.P. Ong, Insights into the performance limits of the Li7P3S11 superionic conductor:A combined first-principles and experimental study, ACS Appl. Mater. Interfaces 8(12) (2016) 7843-7853. [46] H. Yamane, M. Shibata, Y. Shimane, T. Junke, Y. Seino, S. Adams, K. Minami, A. Hayashi, M. Tatsumisago, Crystal structure of a superionic conductor, Li7P3S11, Solid State Ionics 178(15-18) (2007) 1163-1167. [47] J.J. Wei, H. Kim, D.C. Lee, R.Z. Hu, F.X. Wu, H.L. Zhao, F.M. Alamgir, G. Yushin, Influence of annealing on ionic transfer and storage stability of Li2S-P2S5 solid electrolyte, J. Power Sources 294(2015) 494-500. [48] K. Minami, A. Hayashi, M. Tatsumisago, Preparation and characterization of superionic conducting Li7P3S11 crystal from glassy liquids, J. Ceram. Soc. Japan 118(1376) (2010) 305-308. [49] T. Ohkubo, K. Ohara, E. Tsuchida, Conduction mechanism in 70Li2S-30P2S5 glass by ab initio molecular dynamics simulations:Comparison with Li7P3S11 crystal, ACS Appl. Mater. Interfaces 12(23) (2020) 25736-25747. [50] T. Takahashi, K. Nagagiri, Y. Iwadate, F. Utsuno, H. Yamaguchi, T. Ohkubo, Li conduction pathways in solid-state electrolytes:Insights from dynamics and polarizability, Chem. Phys. Lett. 698(2018) 234-239. [51] L. Zhou, M.K. Tufail, L. Yang, N. Ahmad, R.J. Chen, W. Yang, Cathode-doped sulfide electrolyte strategy for boosting all-solid-state lithium batteries, Chem. Eng. J. 391(2020) 123529. [52] M. Murakami, K. Shimoda, S. Shiotani, A. Mitsui, K. Ohara, Y. Onodera, H. Arai, Y. Uchimoto, Z. Ogumi, Dynamical origin of ionic conductivity for Li7P3S11 metastable crystal as studied by 6/7Li and 31P solid-state NMR, J. Phys. Chem. C 119(43) (2015) 24248-24254. [53] C. Dietrich, R. Koerver, M.W. Gaultois, G. Kieslich, G. Cibin, J. Janek, W.G. Zeier, Spectroscopic characterization of lithium thiophosphates by XPS and XAS-a model to help monitor interfacial reactions in all-solid-state batteries, PCCP 20(30) (2018) 20088-20095. [54] M.K. Tufail, L. Zhou, N. Ahmad, R.J. Chen, M. Faheem, L. Yang, W. Yang, A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries, Chem. Eng. J. 407(2021) 127149. [55] C. Yu, S. Ganapathy, E.R.H. van Eck, L. van Eijck, N. de Klerk, E.M. Kelder, M. Wagemaker, Investigation of Li-ion transport in Li7P3S11 and solid-state lithium batteries, J. Energy Chem. 38(2019) 1-7. [56] M.E. Fleet, Xanes spectroscopy of sulfur in earth materials, Can. Mineral. 43(6) (2005) 1811-1838. [57] E.D. Ingall, J.A. Brandes, J.M. Diaz, M.D. de Jonge, D. Paterson, I. McNulty, W.C. Elliott, P. Northrup, Phosphorus K-edge XANES spectroscopy of mineral standards, J. Synchrotron Radiat. 18(2) (2011) 189-197. [58] Z.F. Yin, M. Kasrai, G.M. Bancroft, K.H. Tan, X.H. Feng, X-ray-absorption spectroscopic studies of sodium polyphosphate glasses, Phys. Rev. B 51(2) (1995) 742. [59] R. Franke, J. Hormes, The P K-near edge absorption spectra of phosphates, Phys. B:Condens. Matter 216(1-2) (1995) 85-95. [60] N. Zhang, F. Ding, S.H. Yu, K.Y. Zhu, H. Li, W.G. Zhang, X.J. Liu, Q. Xu, Novel research approach combined with dielectric spectrum testing for dual-doped Li7P3S11 glass-ceramic electrolytes, ACS Appl. Mater. Interfaces 11(31) (2019) 27897-27905. [61] N. Ahmad, L. Zhou, M. Faheem, M.K. Tufail, L. Yang, R.J. Chen, Y.D. Zhou, W. Yang, Enhanced air stability and high Li-ion conductivity of Li6.988P2.994Nb0.2S10.934O0.6 glass-ceramic electrolyte for all-solid-state lithium-sulfur batteries, ACS Appl. Mater. Interfaces 12(19) (2020) 21548- 21558. [62] A. Hayashi, S. Hama, T. Minami, M. Tatsumisago, Formation of superionic crystals from mechanically milled Li2S-P2S5 glasses, Electrochem. Commun. 5(2) (2003) 111-114. [63] Y.B. Zhang, R.J. Chen, T. Liu, Y. Shen, Y.H. Lin, C.W. Nan, High capacity, superior cyclic performances in all-solid-state lithium-ion batteries based on 78Li2S- 22P2S5 glass-ceramic electrolytes prepared via simple heat treatment, ACS Appl. Mater. Interfaces 9(34) (2017) 28542-28548. [64] Z.C. Liu, W.J. Fu, E.A. Payzant, X. Yu, Z.L. Wu, N.J. Dudney, J. Kiggans, K.L. Hong, A.J. Rondinone, C.D. Liang, Anomalous high ionic conductivity of nanoporous β-Li3PS4, J. Am. Chem. Soc. 135(3) (2013) 975-978. [65] H. Stöffler, T. Zinkevich, M. Yavuz, A.L. Hansen, M. Knapp, J. Bednarčík, S. Randau, F.H. Richter, J. Janek, H. Ehrenberg, S. Indris, Amorphous versus crystalline Li3PS4:Local structural changes during synthesis and Li ion mobility, J. Phys. Chem. C 123(16) (2019) 10280-10290. [66] F. Mizuno, A. Hayashi, K. Tadanaga, M. Tatsumisago, New, highly ionconductive crystals precipitated from Li2S-P2S5 glasses, Adv. Mater. 17(7) (2005) 918-921. [67] R. Mercier, J.P. Malugani, B. Fahys, G. Robert, Superionic conduction in Li2S-P2S5-LiI-glasses, Solid State Ionics 5(1981) 663-666. [68] M. Tatsumisago, New lithium ion conducting glass-ceramics prepared from mechanochemical Li2S-P2S5 glasses, Solid State Ionics 154-155(2002) 635- 640. [69] Z.X. Wang, Y. Jiang, J. Wu, Y. Jiang, W.C. Ma, Y.R. Shi, X.Y. Liu, B. Zhao, Y. Xu, J.J. Zhang, Doping effects of metal cation on sulfide solid electrolyte/lithium metal interface, Nano Energy 84(2021) 105906. [70] R.C. Xu, X.H. Xia, X.L. Wang, Y. Xia, J.P. Tu, Tailored Li2S-P2S5 glass-ceramic electrolyte by MoS2 doping, possessing high ionic conductivity for all-solidstate lithium-sulfur batteries, J. Mater. Chem. A 5(6) (2017) 2829-2834. [71] S.S. Mo, P.H. Lu, F. Ding, Z.B. Xu, J.Q. Liu, X.J. Liu, Q. Xu, High-temperature performance of all-solid-state battery assembled with 95(0.7Li2S-0.3P2S5)- 5Li3PO4 glass electrolyte, Solid State Ionics 296(2016) 37-41. [72] B.X. Huang, X.Y. Yao, Z. Huang, Y.B. Guan, Y. Jin, X.X. Xu, Li3PO4-doped Li7P3S11 glass-ceramic electrolytes with enhanced lithium ion conductivities and application in all-solid-state batteries, J. Power Sources 284(2015) 206-211. [73] K. Minami, A. Hayashi, S. Ujiie, M. Tatsumisago, Structure and properties of Li2S-P2S5-P2S3 glass and glass-ceramic electrolytes, J. Power Sources 189(1) (2009) 651-654. [74] Q. Ge, L. Zhou, Y.M. Lian, X.L. Zhang, R.J. Chen, W. Yang, Metal-phosphidedoped Li7P3S11 glass-ceramic electrolyte with high ionic conductivity for allsolid-state lithium-sulfur batteries, Electrochem. Commun. 97(2018) 100- 104. [75] R.C. Xu, X.H. Xia, S.H. Li, S.Z. Zhang, X.L. Wang, J.P. Tu, All-solid-state lithium- sulfur batteries based on a newly designed Li7P2.9Mn0.1S10.7I0.3 superionic conductor, J. Mater. Chem. A 5(13) (2017) 6310-6317. [76] K. Minami, F. Mizuno, A. Hayashi, M. Tatsumisago, Structure and properties of the 70Li2S · (30-x)P2S5· xP2O5 oxysulfide glasses and glass-ceramics, J. NonCryst. Solids 354(2-9) (2008) 370-373. [77] Y.Y. Guo, H.L. Guan, W.X. Peng, X.L. Li, Y. Ma, D.W. Song, H.Z. Zhang, C.L. Li, L. Q. Zhang, Enhancing the electrochemical performances of Li7P3S11 electrolyte through P2O5 substitution for all-solid-state lithium battery, Solid State Ionics 358(2020) 115506. [78] S.Y. Jung, R. Rajagopal, K.S. Ryu, Synthesis and electrochemical performance of (100-x)Li7P3S11-xLi3SI composite solid electrolyte for all-solid-state lithium batteries, J. Ind. Eng. Chem. 95(2021) 350-356. [79] R. Rajagopal, K.S. Ryu, Structural investigations, visualization, and electrolyte properties of silver halide-doped Li7P3S11 lithium superionic conductors, ACS Sustainable Chem. Eng. 9(3) (2021) 1105-1117. [80] L. Zhou, M.K. Tufail, N. Ahmad, T. Song, R. Chen, W. Yang, Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solidstate electrolyte endowed long-term cycle stability to all-solid-state lithium- sulfur batteries, ACS Appl. Mater. Interfaces 13(2021) 28270-28280. [81] M.K. Tufail, N. Ahmad, L. Zhou, M. Faheem, L. Yang, R.J. Chen, W. Yang, Insight on air-induced degradation mechanism of Li7P3S11 to design a chemicalstable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries, Chem. Eng. J. 425(2021) 130535. [82] Z. Jiang, T.B. Liang, Y. Liu, S.Z. Zhang, Z.X. Li, D.H. Wang, X.L. Wang, X.H. Xia, C. D. Gu, J.P. Tu, Improved ionic conductivity and Li dendrite suppression capability toward Li7P3S11-based solid electrolytes triggered by Nb and O cosubstitution, ACS Appl. Mater. Interfaces 12(49) (2020) 54662-54670. [83] Y. Li, J. Li, J. Cheng, X. Xu, L. Chen, L. Ci, Enhanced air and electrochemical stability of Li7P3S11-based solid electrolytes enabled by aliovalent substitution of SnO2, Adv. Mater. Interfaces 8(14) (2021) 2100368. [84] E. Rangasamy, Z. Liu, M. Gobet, K. Pilar, G. Sahu, W. Zhou, H. Wu, S. Greenbaum, C. Liang, An iodide-based Li7P2S8I superionic conductor, J. Am. Chem. Soc. 137(4) (2015) 1384-1387. [85] Z.J. Wu, Z.K. Xie, A. Yoshida, X.W. An, Z. de Wang, X.G. Hao, A. Abudula, G.Q. Guan, Novel SeS2 doped Li2S-P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries, Chem. Eng. J. 380(2020) 122419. [86] H. Muramatsu, A. Hayashi, T. Ohtomo, S. Hama, M. Tatsumisago, Structural change of Li2S-P2S5 sulfide solid electrolytes in the atmosphere, Solid State Ionics 182(1) (2011) 116-119. [87] M. Tachez, J.P. Malugani, R. Mercier, G. Robert, Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4, Solid State Ionics 14(3) (1984) 181-185. [88] R.G. Pearson, Hard and soft acids and bases, J. Am. Chem. Soc. 85(22) (1963) 3533-3539. [89] G. Sahu, Z. Lin, J.C. Li, Z.C. Liu, N. Dudney, C.D. Liang, Air-stable, highconduction solid electrolytes of arsenic-substituted Li4SnS4, Energy Environ. Sci. 7(3) (2014) 1053-1058. [90] J.W. Liang, N. Chen, X.N. Li, X. Li, K.R. Adair, J.J. Li, C.H. Wang, C. Yu, M. Norouzi Banis, L. Zhang, S.Q. Zhao, S.G. Lu, H. Huang, R.Y. Li, Y.N. Huang, X.L. Sun, Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability, Chem. Mater. 32(6) (2020) 2664-2672. [91] T. Ohtomo, A. Hayashi, M. Tatsumisago, K. Kawamoto, Glass electrolytes with high ion conductivity and high chemical stability in the system LiI-Li2O-Li2SP2S5, Electrochemistry 81(6) (2013) 428-431. [92] H. Tsukasaki, H. Morimoto, S. Mori, Ionic conductivity and thermal stability of Li2O-Li2S-P2S5 oxysulfide glass, Solid State Ionics 347(2020) 115267. [93] A. Hayashi, H. Muramatsu, T. Ohtomo, S. Hama, M. Tatsumisago, Improved chemical stability and cyclability in Li2S-P2S5-P2O5-ZnO composite electrolytes for all-solid-state rechargeable lithium batteries, J. Alloy. Compd. 591(2014) 247-250. [94] S. Wenzel, D.A. Weber, T. Leichtweiss, M.R. Busche, J. Sann, J. Janek, Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte, Solid State Ionics 286(2016) 24-33. [95] J.W. Li, Y.Y. Li, J. Cheng, Q. Sun, L.N. Dai, X.K. Nie, L.N. Chen, G.F. Han, L.J. Ci, A graphene oxide coated sulfide-based solid electrolyte for dendrite-free lithium metal batteries, Carbon 177(2021) 52-59. [96] X.Y. Xu, L. Wang, H.F. Fei, L.J. Ci, Boron nitride doped Li7P3S11 solid electrolyte with improved interfacial compatibility and application in all-solid-state Li/S battery, J. Mater. Sci.:Mater. Electron. 30(21) (2019) 19119-19125. [97] B. Zhao, J. Wu, Z.X. Wang, W.C. Ma, Y.R. Shi, Y. Jiang, J.L. Jiang, X.Y. Liu, Y. Xu, J. J. Zhang, Incorporation of lithium halogen in Li7P3S11 glass-ceramic and the interface improvement mechanism, Electrochim. Acta 390(2021) 138849. [98] Y.X. Yao, C. Yan, Q. Zhang, Emerging interfacial chemistry of graphite anodes in lithium-ion batteries, Chem. Commun. 56(93) (2020) 14570-14584. [99] P.H. Lu, F. Ding, Z.B. Xu, J.Q. Liu, X.J. Liu, Q. Xu, Study on (100-x)(70Li2S- 30P2S5)-xLi2ZrO3 glass-ceramic electrolyte for all-solid-state lithium-ion batteries, J. Power Sources 356(2017) 163-171. [100] J. Haruyama, K. Sodeyama, Y. Tateyama, Cation mixing properties toward Co diffusion at the LiCoO2 cathode/sulfide electrolyte interface in a solid-state battery, ACS Appl. Mater. Interfaces 9(1) (2017) 286-292. [101] N. Ohta, K. Takada, L. Zhang, R. Ma, M. Osada, T. Sasaki, Enhancement of the high-rate capability of solid-state lithium batteries by nanoscale interfacial modification, Adv. Mater. 18(17) (2006) 2226-2229. [102] K. Takada, N. Ohta, L.Q. Zhang, K. Fukuda, I. Sakaguchi, R.Z. Ma, M. Osada, T. Sasaki, Interfacial modification for high-power solid-state lithium batteries, Solid State Ionics 179(27-32) (2008) 1333-1337. [103] N. Ohta, K. Takada, I. Sakaguchi, L.Q. Zhang, R.Z. Ma, K. Fukuda, M. Osada, T. Sasaki, LiNbO3-coated LiCoO2 as cathode material for all solid-state lithium secondary batteries, Electrochem. Commun. 9(7) (2007) 1486-1490. [104] L.T. Cai, H.L. Wan, Q. Zhang, J.P. Mwizerwa, X.X. Xu, X.Y. Yao, In situ coating of Li7P3S11 electrolyte on CuCo2S4/graphene nanocomposite as a highperformance cathode for all-solid-state lithium batteries, ACS Appl. Mater. Interfaces 12(30) (2020) 33810-33816. [105] L.P. Wang, Z.R. Wu, J. Zou, P. Gao, X.B. Niu, H. Li, L.Q. Chen, Li-free cathode materials for high energy density lithium batteries, Joule 3(9) (2019) 2086- 2102. [106] J. Shi, G. Liu, W. Weng, L. Cai, Q. Zhang, J. Wu, X. Xu, X. Yao, Co3S4@Li7P3S11 Hexagonal platelets as cathodes with superior interfacial contact for allsolid-state lithium batteries, ACS Appl. Mater. Interfaces 12(2020) 14079- 14086. [107] Q. Zhang, J.P. Mwizerwa, H.L. Wan, L.T. Cai, X.X. Xu, X.Y. Yao, Fe3S4@Li7P3S11 nanocomposites as cathode materials for all-solid-state lithium batteries with improved energy density and low cost, J. Mater. Chem. A 5(45) (2017) 23919-23925. [108] Q. Zhang, H.L. Wan, G.Z. Liu, Z.G. Ding, J.P. Mwizerwa, X.Y. Yao, Rational design of multi-channel continuous electronic/ionic conductive networks for room temperature vanadium tetrasulfide-based all-solid-state lithium-sulfur batteries, Nano Energy 57(2019) 771-782. [109] B.S. Zhao, L. Wang, P. Chen, S. Liu, G.R. Li, N. Xu, M.T. Wu, X.P. Gao, Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries, ACS Appl. Mater. Interfaces 13(29) (2021) 34477-34485. [110] W. Zhang, Y.Y. Zhang, L.F. Peng, S.P. Li, X.M. Wang, S.J. Cheng, J. Xie, Elevating reactivity and cyclability of all-solid-state lithium-sulfur batteries by the combination of tellurium-doping and surface coating, Nano Energy 76(2020) 105083. [111] B. Fan, Y. Xu, R. Ma, Z. Luo, F. Wang, X. Zhang, H. Ma, P. Fan, B. Xue, W. Han, Will sulfide electrolytes be suitable candidates for constructing a stable solid/liquid electrolyte interface, ACS Appl. Mater. Interfaces 12(2020) 52845- 52856. [112] G.L. Zhu, C.Z. Zhao, H. Yuan, B.C. Zhao, L.P. Hou, X.B. Cheng, H.X. Nan, Y. Lu, J. Zhang, J.Q. Huang, Q.B. Liu, C.X. He, Q. Zhang, Interfacial redox behaviors of sulfide electrolytes in fast-charging all-solid-state lithium metal batteries, Energy Storage Mater. 31(2020) 267-273. [113] S. Randau, D.A. Weber, O. Kötz, R. Koerver, P. Braun, A. Weber, E. Ivers-Tiffée, T. Adermann, J. Kulisch, W.G. Zeier, F.H. Richter, J. Janek, Benchmarking the performance of all-solid-state lithium batteries, Nat. Energy 5(3) (2020) 259-270. [114] R.C. Xu, J. Yue, S.F. Liu, J.P. Tu, F.D. Han, P. Liu, C.S. Wang, Cathode-supported all-solid-state lithium-sulfur batteries with high cell-level energy density, ACS Energy Lett. 4(5) (2019) 1073-1079. |