[1] G.Z. Chen, D.J. Fray, T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature 407(6802) (2000) 361- 364. [2] K. Ono, R.O. Suzuki, A new concept for producing Ti sponge:Calciothermic reduction, JOM 54(2) (2002) 59-61. [3] J. Sure, A.R. Shankar, S. Ramya, C. Mallika, U.K. Mudali, Corrosion behaviour of carbon materials exposed to molten lithium chloride-potassium chloride salt, Carbon 67(2014) 643-655. [4] M.A. Hughes, J.A. Allen, S.W. Donne, Carbonate reduction and the properties and applications of carbon formed through electrochemical deposition in molten carbonates:A review, Electrochim. Acta 176(2015) 1511-1521. [5] W. Weng, M.Y. Wang, X.Z. Gong, Z. Wang, D. Wang, Z.C. Guo, Mechanism analysis of carbon contamination and the inhibition by an anode structure during soluble K2CrO4 electrolysis in CaCl2-KCl molten salt, J. Electrochem. Soc. 164(12) (2017) E360-E366. [6] K.T. Kilby, S.Q. Jiao, D.J. Fray, Current efficiency studies for graphite and SnO2- based anodes for the electro-deoxidation of metal oxides, Electrochim. Acta 55(23) (2010) 7126-7133. [7] D. Sri Maha Vishnu, N. Sanil, L. Shakila, G. Panneerselvam, R. Sudha, K.S. Mohandas, K. Nagarajan, A study of the reaction pathways during electrochemical reduction of dense Nb2O5 pellets in molten CaCl2 medium, Electrochim. Acta 100(2013) 51-62. [8] W. Weng, Z. Wang, Z.C. Guo, S.Q. Jiao, M.Y. Wang, Enhanced electrodeposition and separation of metallic Cr from soluble K2CrO4 on a liquid Zn cathode, J. Energy Chem. 40(2020) 204-211. [9] K. Dring, R. Bhagat, M. Jackson, R. Dashwood, D. Inman, Direct electrochemical production of Ti-10W alloys from mixed oxide preform precursors, J. Alloy. Compd. 419(1-2) (2006) 103-109. [10] W. Weng, M.Y. Wang, X.Z. Gong, Z. Wang, D. Wang, Z.C. Guo, One-step electrochemical preparation of metallic vanadium from sodium metavanadate in molten chlorides, Int. J. Refract Metal Hard Mater. 55(2016) 47-53. [11] R.O. Suzuki, H. Noguchi, Y. Haraguchi, S. Natsui, T. Kikuchi, Metal production in CaCl2-based melts, ECS Trans. 86(14) (2018) 45-53. [12] A. Szkliniarz, W. Szkliniarz, Effect of carbon content on the microstructure and properties of Ti-6Al-4V alloy, Arch. Metall. Mater. 65(2020) 1197-1204. [13] Z.Z. Fang, J.D. Paramore, P. Sun, K.S.R. Chandran, Y. Zhang, Y. Xia, F. Cao, M. Koopman, M. Free, Powder metallurgy of titanium-Past, present, and future, Int. Mater. Rev. 63(7) (2018) 407-459. [14] T. Matsuzaki, S. Natsui, T. Kikuchi, R.O. Suzuki, Electrolytic reduction of V3S4 in molten CaCl2, Mater. Trans. 58(2017) 371-376. [15] C.S. Wu, M.S. Tan, G.Z. Ye, D.J. Fray, X.B. Jin, High-efficiency preparation of titanium through electrolysis of carbo-sulfurized titanium dioxide, ACS Sustain. Chem. Eng. 7(9) (2019) 8340-8346. [16] Y.T. Yuan, W. Li, H.L. Chen, Z.Y. Wang, X.B. Jin, G.Z. Chen, Electrolysis of metal oxides in MgCl2 based molten salts with an inert graphite anode, Faraday Discuss. 190(2016) 85-96. [17] R. Barnett, K.T. Kilby, D.J. Fray, Reduction of tantalum pentoxide using graphite and tin-oxide-based anodes via the FFC-Cambridge process, Metall. Mater. Trans. B 40(2) (2009) 150-157. [18] S.Q. Jiao, D.J. Fray, Development of an inert anode for electrowinning in calcium chloride-calcium oxide melts, Metall. Mater. Trans. B 41(1) (2010) 74- 79. [19] T.X. Ma, M.J. Hu, P.S. Lai, L.Y. Wen, M.L. Hu, Preparation of titanium metal using titanium suboxides in molten salt, Mater. Trans. 60(3) (2019) 400-404. [20] Z.B. Zhao, Z.W. Wang, B.L. Gao, Y.Q. Feng, Z.N. Shi, X.W. Hu, Anodic bubble behavior and voltage drop in a laboratory transparent aluminum electrolytic cell, Metall. Mater. Trans. B 47(3) (2016) 1962-1975. [21] M.A. Cooksey, M.P. Taylor, J.J.J. Chen, Resistance due to gas bubbles in aluminum reduction cells, JOM 60(2) (2008) 51-57. [22] C. Osarinmwian, I.M. Mellor, E.P.L. Roberts, Titanium production in rotationally symmetric electrochemical reactors, Electrochim. Acta 164(2015) 48-54. [23] C. Osarinmwian, Bubble-driven anodic gas in molten salt electrolytes, Appl. Phys. A 123(3) (2017) 1-7. [24] H.L. Chen, X.B. Jin, L.P. Yu, G.Z. Chen, Influences of graphite anode area on electrolysis of solid metal oxides in molten salts, J. Solid State Electrochem. 18(12) (2014) 3317-3325. [25] L. Cassayre, T.A. Utigard, S. Bouvet, Visualizing gas evolution on graphite and oxygen-evolving anodes, J. Miner. Met. Mater. Soc. 54(5) (2002) 41-45. [26] D. Sri Maha Vishnu, J. Sure, K.S. Mohandas, Corrosion of high density graphite anodes during direct electrochemical de-oxidation of solid oxides in molten CaCl2 medium, Carbon 93(2015) 782-792. [27] C. Schwandt, R.R. Doughty, R.J. Fray, The FFC-Cambridge process for titanium metal winning, Key Eng. Mater. 436(2010) 13-25. [28] Y. Xia, J.L. Zhao, Q.H. Tian, X.Y. Guo, Review of the effect of oxygen on titanium and deoxygenation technologies for recycling of titanium metal, JOM 71(9) (2019) 3209-3220. [29] M. Ma, D.H. Wang, W.G. Wang, X.H. Hu, X.B. Jin, G.Z. Chen, Extraction of titanium from different titania precursors by the FFC Cambridge process, J. Alloy. Compd. 420(1-2) (2006) 37-45. [30] K.S. Mohandas, Direct electrochemical conversion of metal oxides to metal by molten salt electrolysis:A review, Miner. Process. Extr. Metall. 122(4) (2013) 195-212. |