中国化学工程学报 ›› 2021, Vol. 39 ›› Issue (11): 37-50.DOI: 10.1016/j.cjche.2021.09.014
Chenxing Yi1, Lijie Zhou2, Xiqing Wu1, Wei Sun1, Longsheng Yi1, Yue Yang1
收稿日期:
2021-04-15
修回日期:
2021-08-15
出版日期:
2021-11-28
发布日期:
2021-12-27
通讯作者:
Xiqing Wu, Wei Sun, Yue Yang
基金资助:
Chenxing Yi1, Lijie Zhou2, Xiqing Wu1, Wei Sun1, Longsheng Yi1, Yue Yang1
Received:
2021-04-15
Revised:
2021-08-15
Online:
2021-11-28
Published:
2021-12-27
Contact:
Xiqing Wu, Wei Sun, Yue Yang
Supported by:
摘要: With the annual increase in the amount of lithium-ion batteries (LIBs), the development of spent LIBs recycling technology has gradually attracted attention. Graphite is one of the most critical materials for LIBs, which is listed as a key energy source by many developed countries. However, it was neglected in spent LIBs recycling, leading to pollution of the environment and waste of resources. In this paper, the latest research progress for recycling of graphite from spent LIBs was summarized. Especially, the processes of pretreatment, graphite enrichment and purification, and materials regeneration for graphite recovery are introduced in details. Finally, the problems and opportunities of graphite recycling are raised.
Chenxing Yi, Lijie Zhou, Xiqing Wu, Wei Sun, Longsheng Yi, Yue Yang. Technology for recycling and regenerating graphite from spent lithium-ion batteries[J]. 中国化学工程学报, 2021, 39(11): 37-50.
Chenxing Yi, Lijie Zhou, Xiqing Wu, Wei Sun, Longsheng Yi, Yue Yang. Technology for recycling and regenerating graphite from spent lithium-ion batteries[J]. Chinese Journal of Chemical Engineering, 2021, 39(11): 37-50.
[1] Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, Y.H. He, On the sustainability of lithium-ion battery industry-A review and perspective, Energy Storage Mater. 36(2021) 186-212. [2] T.A. Atia, G. Elia, R. Hahn, P. Altimari, F. Pagnanelli, Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries:Towards zero-waste process and metal recycling in advanced batteries, J. Energy Chem. 35(2019) 220-227. [3] S.Y. Lei, Y.T. Zhang, S.L. Song, R. Xu, W. Sun, S.M. Xu, Y. Yue, Strengthening valuable metal recovery from spent lithium-ion batteries by environmentally friendly reductive thermal treatment and electrochemical leaching, ACS Sustain. Chem. Eng. 9(20) (2021) 7053-7062. [4] Y. Yang, S.M. Xu, Y.H. He, Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes, Waste Manage. 64(2017) 219-227. [5] S.Y. Lei, Y. Cao, X.F. Cao, W. Sun, Y.Q. Weng, Y. Yang, Separation of lithium and transition metals from leachate of spent lithium-ion batteries by solvent extraction method with Versatic 10, Sep. Purif. Technol. 250(2020) 117258. [6] Y.X. Yang, X.Q. Meng, H.B. Cao, X. Lin, C.M. Liu, Y. Sun, Y. Zhang, Z. Sun, Selective recovery of lithium from spent lithium iron phosphate batteries:a sustainable process, Green Chem. 20(13) (2018) 3121-3133. [7] Y.R. Liang, C.Z. Zhao, H. Yuan, Y. Chen, W.C. Zhang, J.Q. Huang, D.S. Yu, Y.L. Liu, M.M. Titirici, Y.L. Chueh, H.J. Yu, Q. Zhang, A review of rechargeable batteries for portable electronic devices, Infomat 1(1) (2019) 6-32. [8] J. Ordoñez, E.J. Gago, A. Girard, Processes and technologies for the recycling and recovery of spent lithium-ion batteries, Renew. Sustain. Energy Rev. 60(2016) 195-205. [9] B.B. Ma, Y.W. Huang, Z.Z. Nie, X.B. Qiu, D.W. Su, G.X. Wang, J.M. Yuan, X.Q. Xie, Z.J. Wu, Facile synthesis of Camellia oleifera shell-derived hard carbon as an anode material for lithium-ion batteries, RSC Adv. 9(35) (2019) 20424-20431. [10] Y.Q. Wang, N. An, L. Wen, L. Wang, X.T. Jiang, F. Hou, Y.X. Yin, J. Liang, Recent progress on the recycling technology of Li-ion batteries, J. Energy Chem. 55(2021) 391-419. [11] Y.F. Song, B.Y. Xie, S.L. Song, S.Y. Lei, W. Sun, R. Xu, Y. Yang, Regeneration of LiFePO4 from spent lithium-ion batteries via a facile process featuring acid leaching and hydrothermal synthesis, Green Chem. 23(2021) 3963-3971. [12] Y. Yang, G.Y. Huang, M. Xie, S.M. Xu, Y.H. He, Synthesis and performance of spherical LiNixCoyMn1-x-yO2 regenerated from nickel and cobalt scraps, Hydrometallurgy 165(2016) 358-369. [13] X. Lai, Y.F. Huang, H.H. Gu, C. Deng, X.B. Han, X.N. Feng, Y.J. Zheng, Turning waste into wealth:A systematic review on echelon utilization and material recycling of retired lithium-ion batteries, Energy Storage Mater. 40(2021) 96-123. [14] Lithium Ion Battery Recycling Market Report, 2025; EsticastResearch & Consulting. https://www.marketsandmarkets.com/Market-Reports/lithiumion-battery-recycling-market-153488928.html (accessed March 9, 2019). [15] Global EV Outlook 2019; International Energy Agency. https://www.iea.org/gevo2019/(accessed Aug 20, 2019). [16] Global EV Outlook. https://www.greentechmedia.com/squared/electricavenue/6-stats-on-the-state-of-the-global-ev-sector (accessed 2019). [17] Y. Yang, E.G. Okonkwo, G.Y. Huang, S.M. Xu, W. Sun, Y.H. He, On the sustainability of lithium ion battery industry-A review and perspective, Energy Storage Mater. 36(2021) 186-212. [18] Y. Yang, S. Li, Q. Zhang, Y. Zhang, S.M. Xu, Spherical agglomeration of octahedral LiNi0.5Co4xMn1.5-3xO4 cathode material prepared by a continuous coprecipitation method for 5 V lithium-ion batteries, Ind. Eng. Chem. Res. 56(1) (2017) 175-182. [19] C.X. Yi, Y. Yang, T. Zhang, X.Q. Wu, W. Sun, L.S. Yi, A green and facile approach for regeneration of graphite from spent lithium ion battery, J. Clean. Prod. 277(2020) 123585. [20] P. Marques, R. Garcia, L. Kulay, F. Freire, Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade, J. Clean. Prod. 229(2019) 787-794. [21] Z.C. Xu, J. Wang, P.D. Lund, Q. Fan, T. Dong, Y. Liang, J. Hong, A novel clustering algorithm for grouping and cascade utilization of retired Li-ion batteries, J. Energy Storage 29(2020) 101303. [22] K.M. Winslow, S.J. Laux, T.G. Townsend, A review on the growing concern and potential management strategies of waste lithium-ion batteries, Resour. Conserv. Recycl. 129(2018) 263-277. [23] L. Sun, K.Q. Qiu, Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, J. Hazard. Mater. 194(2011) 378-384. [24] D.H.P. Kang, M.J. Chen, O.A. Ogunseitan, Potential environmental and human health impacts of rechargeable lithium batteries in electronic waste, Environ. Sci. Technol. 47(10) (2013) 5495-5503. [25] J. Dewulf, G. van der Vorst, K. Denturck, H. van Langenhove, W. Ghyoot, J. Tytgat, K. Vandeputte, Recycling rechargeable lithium ion batteries:Critical analysis of natural resource savings, Resour. Conserv. Recycl. 54(4) (2010) 229-234. [26] X.L. Zeng, J.H. Li, Spent rechargeable lithium batteries in e-waste:composition and its implications, Front. Environ. Sci. Eng. 8(5) (2014) 792-796. [27] Y. Yang, F.H. Liu, S.L. Song, H.H. Tang, S.T. Ding, W. Sun, S.Y. Lei, S.M. Xu, Recovering valuable metals from the leaching liquor of blended cathode material of spent lithium-ion battery, J. Environ. Chem. Eng. 8(5) (2020) 104358. [28] Y.L. Yao, M.Y. Zhu, Z. Zhao, B.H. Tong, Y.Q. Fan, Z.S. Hua, Hydrometallurgical processes for recycling spent lithium-ion batteries:A critical review, ACS Sustainable Chem. Eng. 6(11) (2018) 13611-13627. [29] W. Lv, Z.H. Wang, H.B. Cao, Y. Sun, Y. Zhang, Z. Sun, A critical review and analysis on the recycling of spent lithium-ion batteries, ACS Sustain. Chem. Eng. 6(2) (2018) 1504-1521. [30] F. Gu, J.F. Guo, X. Yao, P.A. Summers, S.D. Widijatmoko, P. Hall, An investigation of the current status of recycling spent lithium-ion batteries from consumer electronics in China, 161(2017) 765-780. [31] G.Y. Huang, Y. Yang, H.Y. Sun, S.M. Xu, J.L. Wang, M. Ahmad, Z.H. Xu, Defective ZnCo2O4 with Zn vacancies:Synthesis, property and electrochemical application, J. Alloy. Compd. 724(2017) 1149-1156. [32] H. Ku, Y. Jung, M. Jo, S. Park, S. Kim, D. Yang, K. Rhee, E.M. An, J. Sohn, K. Kwon, Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater. 313(2016) 138-146. [33] Y.L. Zhao, X.Z. Yuan, L.B. Jiang, J. Wen, H. Wang, R.P. Guan, J.J. Zhang, G.M. Zeng, Regeneration and reutilization of cathode materials from spent lithiumion batteries, Chem. Eng. J. 383(2020) 123089. [34] Y. Yang, S.Y. Lei, S.L. Song, W. Sun, L.S. Wang, Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries, Waste Manage. 102(2020) 131-138. [35] S.P. Barik, G. Prabaharan, B. Kumar, An innovative approach to recover the metal values from spent lithium-ion batteries, Waste Manage. 51(2016) 222-226. [36] F. Arshad, L. Li, K. Amin, E.S. Fan, N. Manurkar, A. Ahmad, J.B. Yang, F. Wu, R.J. Chen, A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries, ACS Sustain. Chem. Eng. 8(36) (2020) 13527-13554. [37] B. Huang, Z.F. Pan, X.Y. Su, L. An, Recycling of lithium-ion batteries:Recent advances and perspectives, J. Power Sources 399(2018) 274-286. [38] A. Väyrynen, J. Salminen, Lithium ion battery production, J. Chem. Thermodyn. 46(2012) 80-85. [39] Y.Y. Zhang, N.N. Song, J.J. He, R.X. Chen, X.D. Li, Lithiation-aided conversion of end-of-life lithium-ion battery anodes to high-quality graphene and graphene oxide, Nano Lett. 19(1) (2019) 512-519. [40] S. Natarajan, V. Aravindan, An urgent call to spent LIB recycling:whys and wherefores for graphite recovery, Adv. Energy Mater. 10(37) (2020) 2002238. [41] B. Moradi, G.G. Botte, Recycling of graphite anodes for the next generation of lithium ion batteries, J. Appl. Electrochem. 46(2) (2016) 123-148. [42] M. Wissler, Graphite and carbon powders for electrochemical applications, J. Power Sources 156(2) (2006) 142-150. [43] G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbot, K.S. Ryder, L. Gaines, P. Anderson, Recycling lithium-ion batteries from electric vehicles, Nature 575(7781) (2019) 75-86. [44] Q. Xu, Y. Wang, X.Y. Shi, Y.J. Zhong, Z.G. Wu, Y. Song, G.K. Wang, Y.X. Liu, B.H. Zhong, X.D. Guo, The direct application of spent graphite as a functional interlayer with enhanced polysulfide trapping and catalytic performance for Li-S batteries, Green Chem. 23(2) (2021) 942-950. [45] Y. Yang, G.Y. Huang, S.M. Xu, Y.H. He, X. Liu, Thermal treatment process for the recovery of valuable metals from spent lithium-ion batteries, Hydrometallurgy 165(2016) 390-396. [46] P. Guo, H.H. Song, X.H. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries, Electrochem. Commun. 11(6) (2009) 1320-1324. [47] K. Ohzeki, Y. Saito, B. Golman, K. Shinohara, Shape modification of graphite particles by rotational impact blending, Carbon 43(8) (2005) 1673-1679. [48] Y. Lee, The effect of active material, conductive additives, and binder in a cathode composite electrode on battery performance, Energies 12(4) (2019) 658. [49] L.F. Zhou, D.R. Yang, T. Du, H. Gong, W.B. Luo, The current process for the recycling of spent lithium ion batteries, Front. Chem. 8(2020) 578044. [50] M. Yoshio, H.Y. Wang, K. Fukuda, Spherical carbon-coated natural graphite as a lithium-ion battery-anode material, Angew. Chem. Int. Ed. 42(35) (2003) 4203-4206. [51] Y. Nishi, The development of lithium ion secondary batteries, Chem. Rec. 1(5) (2001) 406-413. [52] Y. Yang, G.Y. Huang, H.Y. Sun, M. Ahmad, Q.Y. Mou, H.M. Zhang, Preparation and electrochemical properties of mesoporous NiCo2O4 double-hemisphere used as anode for lithium-ion battery, J Colloid Interface Sci. 529(2018) 357-365. [53] D. Miranda, A. Gören, C.M. Costa, M.M. Silva, A.M. Almeida, S. LancerosMéndez, Theoretical simulation of the optimal relation between active material, binder and conductive additive for lithium-ion battery cathodes, Energy 172(2019) 68-78. [54] Y.H. Chen, C.W. Wang, X. Zhang, A.M. Sastry, Porous cathode optimization for lithium cells:Ionic and electronic conductivity, capacity, and selection of materials, J. Power Sources 195(9) (2010) 2851-2862. [55] L. Fransson, T. Eriksson, K. Edström, T. Gustafsson, J.O. Thomas, Influence of carbon black and binder on Li-ion batteries, J. Power Source. 101(1) (2001) 1-9. [56] H.H. Zheng, R.Z. Yang, G. Liu, X.Y. Song, V.S. Battaglia, Cooperation between active material, polymeric binder and conductive carbon additive in lithium ion battery cathode, J. Phys. Chem. C 116(7) (2012) 4875-4882. [57] R.J. Zheng, W.H. Wang, Y.K. Dai, Q.X. Ma, Y.L. Liu, D.Y. Mu, R.H. Li, J. Ren, C.S. Dai, A closed-loop process for recycling LiNixCoyMn(1-x-y)O2 from mixed cathode materials of lithium-ion batteries, Green Energy Environ. 2(1) (2017) 42-50. [58] Y. Shi, G. Chen, F. Liu, X.J. Yue, Z. Chen, Resolving the compositional and structural defects of degraded LiNixCoyMnzO2 particles to directly regenerate high-performance lithium-ion battery cathodes, ACS Energy Lett. 3(7) (2018) 1683-1692. [59] H.F. Zhang, X.W. Wang, Y. Liang, Preparation and characterization of a Lithium-ion battery separator from cellulose nanofibers, Heliyon 1(2) (2015) e00032. [60] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X.W. Zhang, A review of recent developments in membrane separators for rechargeable lithium-ion batteries, Energy Environ. Sci. 7(12) (2014) 3857-3886. [61] D.S. Kim, J.S. Sohn, C.K. Lee, J.H. Lee, K.S. Han, Y.I. Lee, Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sources 132(1-2) (2004) 145-149. [62] D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini, Alternative binders for sustainable electrochemical energy storage-the transition to aqueous electrode processing and bio-derived polymers, Energy Environ. Sci. 11(11) (2018) 3096-3127. [63] I. Doberdò, N. Löffler, N. Laszczynski, D. Cericola, N. Penazzi, S. Bodoardo, G.T. Kim, S. Passerini, Enabling aqueous binders for lithium battery cathodes-Carbon coating of aluminum current collector, J. Power Sources 248(2014) 1000-1006. [64] X. Zhang, Y. Xie, H. Cao, F. Nawaz, Y. Zhang, A novel process for recycling and resynthesizing LiNi1/3Co1/3Mn1/3O2 from the cathode scraps intended for lithium-ion batteries, Waste Manage. 34(9) (2014) 1715-1724. [65] T. Georgi-Maschler, B. Friedrich, R. Weyhe, H. Heegn, M. Rutz, Development of a recycling process for Li-ion batteries, J. Power Sources 207(2012) 173-182. [66] J.C. Barbosa, J.P. Dias, S. Lanceros-Méndez, C.M. Costa, Recent advances in poly (vinylidene fluoride) and its copolymers for lithium-ion battery separators, Membranes (Basel) 8(3) (2018) E45. [67] C.M. Costa, J.L. Gomez Ribelles, S. Lanceros-Méndez, G.B. Appetecchi, B. Scrosati, Poly(vinylidenefluoride)-based, co-polymer separator electrolyte membranes for lithium-ion battery systems, J. Power Sources 245(2014) 779-786. [68] F.X.Y. Zeng, R.Z. Xu, L. Ye, B.J. Xiong, J. Kang, M. Xiang, L. Li, X.Y. Sheng, Z.H. Hao, Effects of heat setting on the morphology and performance of polypropylene separator for lithium ion batteries, Ind. Eng. Chem. Res. 58(6) (2019) 2217-2224. [69] C.M. Costa, J.C. Barbosa, R. Gonalves, H. Castro, F.J. Del Campo, S. LancerosMendez, Recycling and environmental issues of lithium-ion batteries:advances, challenges and opportunities, Energy Storage Mater. 37(2021) 433-465. [70] M. Grützke, X. Mönnighoff, F. Horsthemke, V. Kraft, M. Winter, S. Nowak, Extraction of lithium-ion battery electrolytes with liquid and supercritical carbon dioxide and additional solvents, RSC Adv. 5(54) (2015) 43209-43217. [71] L.B. Chen, K. Wang, X.H. Xie, J.Y. Xie, Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries, J. Power Sources 174(2) (2007) 538-543. [72] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir 28(1) (2012) 965-976. [73] M. Park, X.C. Zhang, M. Chung, G.B. Less, A.M. Sastry, A review of conduction phenomena in Li-ion batteries, J. Power Sources 195(24) (2010) 7904-7929. [74] J.F. Xiao, J. Guo, L. Zhan, Z.M. Xu, A cleaner approach to the discharge process of spent lithium ion batteries in different solutions, J. Clean. Prod. 255(2020) 120064. [75] E. Gratz, Q.N. Sa, D. Apelian, Y. Wang, A closed loop process for recycling spent lithium ion batteries, J. Power Sources 262(2014) 255-262. [76] L.P. Yao, Q. Zeng, T. Qi, J. Li, An environmentally friendly discharge technology to pretreat spent lithium-ion batteries, J. Clean. Prod. 245(2020) 118820. [77] J.F. Xiao, J. Li, Z.M. Xu, Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy, J. Hazard. Mater. 338(2017) 124-131. [78] J.Q. Xu, H.R. Thomas, R.W. Francis, K.R. Lum, J.W. Wang, B. Liang, A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sources 177(2) (2008) 512-527. [79] X.H. Zheng, Z.W. Zhu, X. Lin, Y. Zhang, Y. He, H.B. Cao, Z. Sun, A mini-review on metal recycling from spent lithium ion batteries, Engineering 4(3) (2018) 361-370. [80] T. Zhang, Y.Q. He, L.H. Ge, R.S. Fu, X. Zhang, Y.J. Huang, Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries, J. Power Sources 240(2013) 766-771. [81] A.J. da Costa, J.F. Matos, A.M. Bernardes, I.L. Muller, Beneficiation of cobalt, copper and aluminum from wasted lithium-ion batteries by mechanical processing, Int. J. Miner. Process. 145(2015) 77-82. [82] H.F. Wang, J.S. Liu, X.J. Bai, S. Wang, D. Yang, Y.P. Fu, Y.Q. He, Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding, Waste Manage. 91(2019) 89-98. [83] Y. Chen, N. Liu, F. Hu, L. Ye, Y. Xi, S. Yang, Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries, Waste Manage. 75(2018) 469-476. [84] G.W. Zhang, Y.Q. He, Y. Feng, H.F. Wang, T. Zhang, W.N. Xie, X.N. Zhu, Enhancement in liberation of electrode materials derived from spent lithiumion battery by pyrolysis, J. Clean. Prod. 199(2018) 62-68. [85] G.W. Zhang, Y.Q. He, Y. Feng, H.F. Wang, X.N. Zhu, Pyrolysis-ultrasonicassisted flotation technology for recovering graphite and LiCoO2 from spent lithium-ion batteries, ACS Sustain. Chem. Eng. 6(8) (2018) 10896-10904. [86] Y. Yang, S.L. Song, S.Y. Lei, W. Sun, H.S. Hou, F. Jiang, X.B. Ji, W.Q. Zhao, Y.H. Hu, A process for combination of recycling lithium and regenerating graphite from spent lithium-ion battery, Waste Manag. 85(2019) 529-537. [87] M.M. Wang, Q.Y. Tan, L.L. Liu, J.H. Li, A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries, J. Hazard. Mater. 380(2019) 120846. [88] M.M. Wang, Q.Y. Tan, L.L. Liu, J.H. Li, A facile, environmentally friendly, and low-temperature approach for decomposition of polyvinylidene fluoride from the cathode electrode of spent lithium-ion batteries, ACS Sustainable Chem. Eng. 7(15) (2019) 12799-12806. [89] Y.J. Liu, Q.Y. Hu, X.H. Li, Z.X. Wang, H.J. Guo, Recycle and synthesis of LiCoO2 from incisors bound of Li-ion batteries, Trans. Nonferrous Met. Soc. China 16(4) (2006) 956-959. [90] J.H. Li, S.W. Zhong, D.L. Xiong, H. Chen, Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Li-ion batteries, Rare Met. 28(4) (2009) 328-332. [91] X. Song, T. Hu, C. Liang, H.L. Long, L. Zhou, W. Song, L. You, Z.S. Wu, J.W. Liu, Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC Adv. 7(8) (2017) 4783-4790. [92] X.X. Zhang, Q. Xue, L. Li, E. Fan, F. Wu, R.J. Chen, Sustainable recycling and regeneration of cathode scraps from industrial production of lithium-ion batteries, ACS Sustain. Chem. Eng. 4(12) (2016) 7041-7049. [93] D.W. Song, X.Q. Wang, E.L. Zhou, P.Y. Hou, F.X. Guo, L.Q. Zhang, Recovery and heat treatment of the Li(Ni1/3Co1/3Mn1/3)O2 cathode scrap material for lithium ion battery, J. Power Sources 232(2013) 348-352. [94] L. Li, L.Y. Zhai, X.X. Zhang, J. Lu, R.J. Chen, F. Wu, K. Amine, Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process, J. Power Sources 262(2014) 380-385. [95] L.P. He, S.Y. Sun, X.F. Song, J.G. Yu, Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning, Waste Manage. 46(2015) 523-528. [96] L. Yao, Y. Feng, G.X. Xi, A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries, RSC Adv. 5(55) (2015) 44107-44114. [97] K. He, Z.Y. Zhang, L. Alai, F.S. Zhang, A green process for exfoliating electrode materials and simultaneously extracting electrolyte from spent lithium-ion batteries, J. Hazard. Mater. 375(2019) 43-51. [98] D. Pant, T. Dolker, Green and facile method for the recovery of spent Lithium Nickel Manganese Cobalt Oxide (NMC) based Lithium ion batteries, Waste Manag. 60(2017) 689-695. [99] X. Zeng, J. Li, Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries, J Hazard. Mater. 271(2014) 50-56. [100] F. Jeschull, D. Brandell, M. Wohlfahrt-Mehrens, M. Memm, Water-soluble binders for lithium-ion battery graphite electrodes:slurry rheology, coating adhesion, and electrochemical performance, Energy Technol. 5(11) (2017) 2108-2118. [101] K.C. Kil, U. Paik, Lithium salt of carboxymethyl cellulose as an aqueous binder for thick graphite electrode in lithium ion batteries, Macromol. Res. 23(8) (2015) 719-725. [102] N. Cuesta, A. Ramos, I. Cameán, C. Antuña, A.B. García, Hydrocolloids as binders for graphite anodes of lithium-ion batteries, Electrochim. Acta 155(2015) 140-147. [103] H.R. Wang, Y.S. Huang, C.F. Huang, X.S. Wang, K. Wang, H.B. Chen, S.B. Liu, Y.P. Wu, K. Xu, W.S. Li, Reclaiming graphite from spent lithium ion batteries ecologically and economically, Electrochim. Acta 313(2019) 423-431. [104] R.T. Zhan, Z.Z. Yang, I. Bloom, L. Pan, Significance of a solid electrolyte interphase on separation of anode and cathode materials from spent Li-ion batteries by froth flotation, ACS Sustain. Chem. Eng. 9(1) (2021) 531-540. [105] G.W. Zhang, Z.X. Du, Y.Q. He, H.F. Wang, W.N. Xie, T. Zhang, A sustainable process for the recovery of anode and cathode materials derived from spent lithium-ion batteries, Sustainability 11(8) (2019) 2363. [106] J.D. Yu, Y.Q. He, L.L. Qu, J.S. Yang, W.N. Xie, X.N. Zhu, Exploring the critical role of grinding modification on the flotation recovery of electrode materials from spent lithium ion batteries, J. Clean. Prod. 274(2020) 123066. [107] R. Ruismäki, T. Rinne, A. Dan ′czak, P. Taskinen, R. Serna-Guerrero, A. Jokilaakso, Integrating flotation and pyrometallurgy for recovering graphite and valuable metals from battery scrap, Metals 10(5) (2020) 680. [108] J.S. Liu, H.F. Wang, T.T. Hu, X.J. Bai, S. Wang, W.N. Xie, J. Hao, Y.Q. He, Recovery of LiCoO2 and graphite from spent lithium-ion batteries by cryogenic grinding and froth flotation, Miner. Eng. 148(2020) 106223. [109] G.W. Zhang, Y.Q. He, H.F. Wang, Y. Feng, W.N. Xie, X.N. Zhu, Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent lithium-ion batteries, ACS Sustain. Chem. Eng. 8(5) (2020) 2205-2214. [110] G.W. Zhang, Y.Q. He, H.F. Wang, Y. Feng, W.N. Xie, X.N. Zhu, Application of mechanical crushing combined with pyrolysis-enhanced flotation technology to recover graphite and LiCoO2 from spent lithium-ion batteries, J. Clean. Prod. 231(2019) 1418-1427. [111] N.A. Laziz, J. Abou-Rjeily, A. Darwiche, J. Toufaily, A. Outzourhit, F. Ghamouss, M.T. Sougrati, Li-and Na-ion storage performance of natural graphite via simple flotation process, J. Electrochem. Sci. Te. 9(4) (2018) 320-329. [112] R.T. Zhan, Z. Oldenburg, L. Pan, Recovery of active cathode materials from lithium-ion batteries using froth flotation, Sustain. Mater. Techno. 17(2018) e00062. [113] J.D. Yu, Y.Q. He, Z.Z. Ge, H. Li, W.N. Xie, S. Wang, A promising physical method for recovery of LiCoO2 and graphite from spent lithium-ion batteries:Grinding flotation, Sep. Purif. Technol. 190(2018) 45-52. [114] Y.Q. He, T. Zhang, F.F. Wang, G.W. Zhang, W.G. Zhang, J. Wang, Recovery of LiCoO2 and graphite from spent lithium-ion batteries by Fenton reagentassisted flotation, J. Clean. Prod. 143(2017) 319-325. [115] N. Vieceli, R. Casasola, G. Lombardo, B. Ebin, M. Petranikova, Hydrometallurgical recycling of EV lithium-ion batteries:Effects of incineration on the leaching efficiency of metals using sulfuric acid, Waste Manage. 125(2021) 192-203. [116] Y. Gao, C.Y. Wang, J.L. Zhang, Q.K. Jing, B.Z. Ma, Y.Q. Chen, W.J. Zhang, Graphite recycling from the spent lithium-ion batteries by sulfuric acid curing-leaching combined with high-temperature calcination, ACS Sustainable Chem. Eng. 8(25) (2020) 9447-9455. [117] Y.C. Zhang, W.Q. Wang, Q. Fang, S.M. Xu, Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching, Waste Manage. 102(2020) 847-855. [118] Y.P. Fu, Y.Q. He, H.C. Chen, C.L. Ye, Q.C. Lu, R.N. Li, W.N. Xie, J. Wang, Effective leaching and extraction of valuable metals from electrode material of spent lithium-ion batteries using mixed organic acids leachant, J. Ind. Eng. Chem. 79(2019) 154-162. [119] Y. Yang, W. Sun, Y.J. Bu, C.Y. Zhang, S.L. Song, Y.H. Hu, Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching, ACS Sustainable Chem. Eng. 6(8) (2018) 10445-10453. |
[1] | Shaojun Niu, Guobin Zhu, Kai Wu, Honghe Zheng. The feasibility for natural graphite to replace artificial graphite in organic electrolyte with different film-forming additives[J]. 中国化学工程学报, 2023, 56(4): 58-69. |
[2] | Suhang Jiang, Lijuan Tan, Yujia Tong, Lijian Shi, Weixing Li. A heterogeneous double chamber electro-Fenton with high production of H2O2 using La–CeO2 modified graphite felt as cathode[J]. 中国化学工程学报, 2023, 54(2): 98-105. |
[3] | Hongbing Song, Lei Liu, Bingxiao Feng, Haozhong Wang, Meng Xiao, Hengjun Gai, Yubao Tang, Xiaofei Qu, Tingting Huang. Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants[J]. 中国化学工程学报, 2021, 40(12): 293-303. |
[4] | Xiaodong Tang, Qiankun Guo, Miaomiao Zhou, Shengwen Zhong. Direct regeneration of LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries[J]. 中国化学工程学报, 2021, 40(12): 278-286. |
[5] | Jin Zhang, Aili Wang, Hengbo Yin. Preparation of graphite nanosheets in different solvents by sand milling and their enhancement on tribological properties of lithiumbased grease[J]. 中国化学工程学报, 2020, 28(4): 1177-1186. |
[6] | Liang Yang, Xin Wang, Daoping Liu, Guomin Cui, Binlin Dou, Juan Wang, Shuqing Hao. Accelerated methane storage in clathrate hydrates using surfactantstabilized suspension with graphite nanoparticles[J]. 中国化学工程学报, 2020, 28(4): 1112-1119. |
[7] | Eduard Manek, Juma Haydary. Investigation of the liquid recycle in the reactor cascade of an industrial scale ebullated bed hydrocracking unit[J]. Chinese Journal of Chemical Engineering, 2019, 27(2): 298-304. |
[8] | Ke Wang, Xinchao Yang, Xidong Ren, Jianhua Zhang, Zhonggui Mao. Development of a new cleaner production process for cassava ethanol[J]. , 2017, 25(4): 493-498. |
[9] | Ying Li, Jintao Guan. A stepwise optimal design of water network[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 787-794. |
[10] | SaiWang, Songsong Xu, Chengbao Liu, Feng Chen, Dongtian Wang, Shouqing Liu, Zhigang Chen, Zhengying Wu. Characterization and adsorption behaviors of a novel synthesized mesoporous silica coated carbon composite[J]. Chinese Journal of Chemical Engineering, 2016, 24(1): 190-195. |
[11] | Junping Song, Lianxiang Ma, Yan He, Haiquan Yan, Zan Wu, Wei Li. Modified graphite filled natural rubber composites with good thermal conductivity[J]. Chinese Journal of Chemical Engineering, 2015, 23(5): 853-859. |
[12] | 金哲权, 田波, 王丽伟, 王如竹. Comparison on Thermal Conductivity and Permeability of Granular and Consolidated Activated Carbon for Refrigeration[J]. Chinese Journal of Chemical Engineering, 2013, 21(6): 676-682. |
[13] | 刘巍, 杨殿海, 徐立, 沈昌明. A Modified Oxidation Ditch with Additional Internal Anoxic Zones for Enhanced Biological Nutrient Removal[J]. Chinese Journal of Chemical Engineering, 2013, 21(2): 192-198. |
[14] | 孙付保, 毛忠贵, 张建华, 张宏建, 唐蕾, 张成明, 张静, 翟芳芳. Water-recycled Cassava Bioethanol Production Integrated with Two-stage UASB Treatment[J]. , 2010, 18(5): 837-842. |
[15] | Arwa H. Rabie, Mahmoud M. El-Halwagi. Synthesis and Scheduling of Optimal Batch Water-recycle Networks[J]. , 2008, 16(3): 474-479. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||