[1] S.G. Kandlikar, W.J. Grande, Evolution of microchannel flow passages thermohydraulic performance and fabrication technology, Heat Transf. Eng., 24 (2003) 3–17 [2] S. Kumar, P. Kumar Singh, Effects of flow inlet angle on flow maldistribution and thermal performance of water cooled mini-channel heat sink, Int. J. Therm. Sci., 138 (2019) 504-511 [3] P. Li, Y. Luo, D. Zhang, Y. Xie, Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin, Int. J. Heat Mass Transf., 119 (2018) 152–162 [4] M.T. Al-Asadi, A. Al-damook, M.C.T. Wilson, Assessment of vortex generator shapes and pin fin perforations for enhancing water-based heat sink performance, Int. Communic. Heat Mass Transf., 91 (2018) 1–10 [5] Y. Liu, Q. Zhang, M. Xu, H. Yuan, Y. Chen, J. Zhang, K. Luo, J. Zhang, B. You, Novel and efficient synthesis of Ag-ZnO nanoparticles for the sunlight-induced photocatalytic degradation, Appl. Surf. Sci., 476 (2019) 632-640. https://doi.org/10.1016/j.apsusc.2019.01.137 [6] F. Su, Q. Jia, Z. Li, M. Wang, L. He, D. Peng, Y. Song, Z. Zhang, S. Fang, Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery, Micropor. Mesopor. Mater., 275 (2019) 152-162. https://doi.org/10.1016/j.micromeso.2018.08.026 [7] L. He, J. Liu, Y. Liu, B. Cui, B. Hu, M. Wang, K. Tian, Y. Song, S. Wu, Z. Zhang, Z. Peng, M. Du, Titanium dioxide encapsulated carbon-nitride nanosheets derived from MXene and melamine-cyanuric acid composite as a multifunctional electrocatalyst for hydrogen and oxygen evolution reaction and oxygen reduction reaction, Appl. Catal. B: Environ., 248 (2019) 366-379. https://doi.org/10.1016/j.apcatb.2019.02.033 [8] S. Chen, M.K. Hassanzadeh-Aghdam, R. Ansari, An analytical model for elastic modulus calculation of SiC whisker-reinforced hybrid metal matrix nanocomposite containingSiC nanoparticles, J. Alloy. Compound., 767 (2018) 632-641. https://doi.org/10.1016/j.jallcom.2018.07.102 [9] J. Liu, C. Wang, H, Sun, H. Wang, F. Rong, L. He, Y. Lou, S. Zhang, Z. Zhang, M. Du, CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery, Appl. Catal. B: Environ., 279 (2020) 119407. https://doi.org/10.1016/j.apcatb.2020.119407 [10] M.A. Ashraf, Z. Liu, W.X. Peng, K. Jermsittiparsert, G. Hosseinzadeh, R. Hosseinzadeh, Combination of sonochemical and freeze-drying methods for synthesis of graphene/Ag-doped TiO2 nanocomposite: A strategy to boost the photocatalytic performance via well distribution of nanoparticles between graphene sheets, Ceramics Int., 46 (6) (2020) 7446-7452. https://doi.org/10.1016/j.ceramint.2019.11.241 [11] X. Luo, H. Hu, Z. Pan, F. Pei, H. Qian, K. Miao, S. Guo, W. Wang, G. Feng, Efficient and stable catalysis of hollow Cu9S5 nanospheres in the Fenton-like degradation of organic dyes, J. Hazard. Mater., 396 (2020) 122735. https://doi.org/10.1016/j.jhazmat.2020.122735 [12] H. Yu, W. Dai, G. Qian, X. Gong, D. Zhou, X. Li, X. Zhou, The NOx degradation performance of nano-TiO2 coating for asphalt pavement, Nanomater., 10 (5) (2020) 897; https://doi.org/10.3390/nano10050897 [13] H. Guo, K, Qian, A. Cai, J. Tang, J. Liu, Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection, Sensor. Actuat. B: Chem., 300 (2019) 126846. https://doi.org/10.1016/j.snb.2019.126846 [14] C. Guo, M. Hu, Z. Li, F. Duan, L. He, Z. Zhang, F. Marchetti, M. Du, Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomer, Sensor. Actuat. B: Chem., 309 (2020) 127821. https://doi.org/10.1016/j.snb.2020.127821.** [15] M. Gholami, M.R. Nazari, M.H. Talebi, F. Pourfattah, O.A. Akbari, D. Toghraie, Natural convection heat transfer enhancement of different nanofluids by adding dimple fins on a vertical channel wall, Chinese J. Chem. Eng., 28 (3) (2020) 643-659 [16] M. Bahiraei, S. Heshmatian, Graphene family nanofluids: A critical review and future research directions, Energ. Convers. Manag., 196 (2019) 1222-1256 [17] M. Hemmat Esfe, R. Barzegarian, M. Bahiraei, A 3D numerical study on natural convection flow of nanofluid inside a cubical cavity equipped with porous fins using two-phase mixture model, Adv. Powder Technol., 31 (6) (2020) 2480-2492 [18] S. Mir, O.A. Akbari, D. Toghraie, G. Sheikhzadeh, A. Marzban, S. Mir, P. Talebizadehsardari, A comprehensive study of two-phase flow and heat transfer of water/Ag nanofluid in an elliptical curved minichannel, Chinese J. Chem. Eng., 28 (2) (2020) 383-402 [19] A.A. Alfaryjat, A. Dobrovicescu, D. Stanciu, Influence of heat flux and Reynolds number on the entropy generation for different types of nanofluids in a hexagon microchannel heat sink, Chinese J. Chem. Eng., 27 (3) (2019) 501-513 [20] M. Khan, T. Salahuddin, A. Tanveer, M.Y. Malik, A. Hussain, Change in internal energy of thermal diffusion stagnation point Maxwell nanofluid flow along with solar radiation and thermal conductivity, Chinese J. Chem. Eng., 27 (10) (2019) 2352-2358 [21] M. Bahiraei, S. Heshmatian, Electronics cooling with nanofluids: A critical review, Energ. Convers. Manag., 172 (2018) 438–456 [22] M. Izadi, M. Javanahram, S.M. HashemZadeh, D. Jing, Hydrodynamic and heat transfer properties of magnetic fluid in porous medium considering nanoparticle shapes and magnetic field-dependent viscosity, Chinese J. Chem. Eng., 28 (2) (2020) 329-339 [23] A.A. Ahmadi, M. Arabbeiki, H. Muhammad Ali, M. Goodarzi, M.R. Safaei, Configuration and optimization of a minichannel using water–alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomater., 10 (2020) 901 [24] S.L. Tariq, H. Muhammad Ali, M.A. Akram, M.M. Janjua, M. Ahmadlouydarab, Nanoparticles enhanced phase change materials (NePCMs)-A recent review, Appl. Therm. Eng., 176 (2020) 115305 [25] F. Abbas, H. Muhammad Ali, T.R. Shah, H. Babar, M.M. Janjua, U. Sajjad, M. Amer, Nanofluid: Potential evaluation in automotive radiator, J. Mol. Liq., 297 (2020) 112014 [26] H. Muhammad Ali, In tube convection heat transfer enhancement: SiO2 aqua based nanofluids, J. Mol. Liq., 308 (2020) 113031 [27] M. Ahmadlouydarab, M. Ebadolahzadeh, H. Muhammad Ali, Effects of utilizing nanofluid as working fluid in a lab-scale designed FPSC to improve thermal absorption and efficiency, Physica A: Statistic. Mech. Applic., 540 (2019) 123109 [28] M. Ghaneifar, A. Raisi, H. Muhammad Ali, P. Talebizadehsardari, Mixed convection heat transfer of AL2O3 nanofluid in a horizontal channel subjected with two heat sources, J. Therm. Anal. Calorim., (2020), in press, https://doi.org/10.1007/s10973-020-09887-2 [29] C.J. Ho, J. Liao, C. Lib, W. Yan, M. Amani, Experimental study of cooling performance of water-based alumina nanofluid in a minichannel heat sink with MEPCM layer embedded in its ceiling, Int. Communic. Heat Mass Transf., 103 (2019) 1–6 [30] H. Tariq, M. Anwar, A. Malik, H. Muhammad Ali, Hydro-thermal performance of normal-channel facile heat sink using TiO2-H2O mixture (Rutile–Anatase) nanofluids for microprocessor cooling, J. Therm. Anal. Calorim., (2020), in press, https://doi.org/10.1007/s10973-020-09838-x [31] E. Ghasemi, A.A Ranjbar, M.J. Hosseini, Experimental evaluation of cooling performance of circular heat sinks for heat dissipation from electronic chips using nanofluid, Mech. Res. Communic., 84 (2017) 85-89 [32] T. Ambreen, A. Saleem, C. Park, Numerical analysis of the heat transfer and fluid flow characteristics of a nanofluid-cooled micropin-fin heat sink using the Eulerian-Lagrangian approach, Powder Technol., 345 (2019) 509-520 [33] M. Zargartalebi, J. Azaiez, Heat transfer analysis of nanofluid based microchannel heat sink, Int. J. Heat Mass Transf., 127 (2018) 1233–1242 [34] T. Ambreen, M. Kim, Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks, Int. J. Heat Mass Transf., 126 (2018) 245–256 [35] M. Bahiraei, S. Heshmatian, Thermal performance and second law characteristics of two new microchannel heat sinks operated with hybrid nanofluid containing, Energ. Convers. Manag., 168 (2018) 357-370 [36] S.M. Hassani, M. Khoshvaght-Aliabadi, S. Mazloumi, Influence of chevron fin interruption on thermo-fluidic transport characteristics of nanofluid-cooled electronic heat sink, Chem. Eng. Sci., 191 (2018) 436–447 [37] E. Ghasemi, A.A. Ranjbar, M.J. Hosseini, Forced convective heat transfer of nanofluid as a coolant flowing through a heat sink: Experimental and numerical study, J. Mol. Liq., 248 (2017) 264-270 [38] H. Kim, S. Lee, S. Kim, s. Jang, The effect of nanoparticle shape on the thermal resistance of a flat-plate heat pipe using acetone-based Al2O3 nanofluids, Int. J. Heat Mass Transf., 92 (2016) 572–577 [39] M. Sheikholeslami, Magnetic field influence on CuO-H2O nanofluid convective flow in a permeable cavity considering various shapes for nanoparticles, J. Mol. Liq., 234 (2017) 364-374 [40] A. Abbasian Arani, S. Sadripour, S. Kermani, Nanoparticle shape effects on thermal-hydraulic performance of boehmite alumina nanofluids in a sinusoidal-wavy mini-channel with phase shift and variable wavelength, Int. J. Mech. Sci., 128-129 (2017) 550-563 [41] I. Khan, Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium, J. Mol. Liq., 233 (2017) 442-451 [42] N. Akbar, A. Butt, D. Tripathi, Nanoparticle Shapes Effects on Unsteady Physiological Transport of Nanofluids through a Finite Length Non-Uniform Channel, Result. Phys., 7 (2017) 2477-2484 [43] O. Mahian. A. Kianifar, S.Z. Heris, S. Wongwises, First and second laws analysis of a minichannel-based solar collector using boehmite alumina nanofluids: Effects of nanoparticle shape and tube materials, Int. J. Heat Mass Transf., 78 (2014) 1166–1176 [44] Hamilton RL, Crosser OK. Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundame., 1 (3) (1962) 182-91 [45] S. Mueller, E.W. Llewellin, H.M. Mader, The rheology of suspensions of solid particles, Proceed. Royal Society, A Math. Phys. Eng. Sci., 466 (2010) 1201-1228 [46] E.H. Ooi, V. Popov, Numerical study of influence of nanoparticle shape on the natural convection in Cu-water nanofluid, Int. J. Therm. Sci., 65 (2013) 178-88 [47] E.V. Timofeeva, J.L. Routbort, D. Singh, Particle shape effects on thermophysical properties of alumina nanofluids, J. Appl. Phys., 106 (2009) 014304 [48] R. Chein, J. Chen, Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance, Int. J. Therm. Sci., 48 (2009) 1627–38 [49] M.M. Ghosh, S.K. Pabi, Effects of particle shape and fluid temperature on heat-transfer characteristics of nanofluids, J. Mater. Eng. Perform., 22 (6) (2012) 1525–1529 [50] S. A. Mirmohammadi, M. Behi, Y. Gan, L. Shen, Particle-shape-, temperature-, and concentration-dependent thermal conductivity and viscosity of nanofluids, Phys. Rev. E, 99 (4-1) (2019) 043109 [51] S.J. Krishnan S, P.K. Nagarajan, Influence of stability and particle shape effects for an entropy generation based optimized selection of magnesia nanofluid for convective heat flow applications, Appl. Surf. Sci., 489 (2019) 560–575 |