[1] R.E. Treybal, Liquid Extraction, in: f. edition (Ed.) Mcgraw-Hill Book Company Inc, New York, 1951. [2] V.S. Kislik, Solvent extraction: classical and novel approaches, Elsevier2011 [3] T.C. Lo, M.H. Baird, C. Hanson, Handbook of solvent extraction, Wiley New York etc.1983 [4] Clift R., Grace J., Weber M., Bubbles, Drops and Particles, Academic Press, New York, 197 [5] A.M. Dehkordi, Application of a novel-opposed-jets contacting device in liquid-liquid extraction, Chem. Eng. Process, 41 (3) (2002) 251-258 [6] J. Saien, S. Asadabadi, Salting-out effect of NaCl on the rate of mass transfer of liquid-liquid extraction in a two impinging-jets contacting device, J. Taiwan Inst. Chem. Eng., 41 (3) (2010) 295-301 [7] D.-W. Sun, I.W. Eames, Recent developments in the design theories and applications of ejectors-a review, Energy & Fuels, 1995, pp. 361 [8] R.L. Yadav, A.W. Patwardhan, Design aspects of ejectors: Effects of suction chamber geometry, Chem. Eng. Sci., 63 (15) (2008) 3886-3897 [9] A. Suresh, T. Srinivasan, P. Vasudeva Rao, C. Rajagopalan, S. Koganti, U/Th Separation by counter-current liquid-liquid extraction with tri‐sec butyl phosphate by using an ejector mixer-settler, Sep. Pur. Technol., 39 (10) (2005) 2477-2496 [10] Ludwig E.E., Applied process design for chemical and petrochemical plants, Gulf Publishing Co., Houston, 1984. [11] A. Sahu, A.B. Vir, L.S. Molleti, S. Ramji, S. Pushpavanam, Comparison of liquid-liquid extraction in batch systems and micro-channels, Chem. Eng. Process, 104 (2016) 190-200 [12] M. Moresi, G. Bartolo Gianturco, E. Sebastiani, The ejector‐loop fermenter: Description and performance of the apparatus, Biotechnol. Bioeng., 25 (12) (1983) 2889-2904 [13] M. Hosseinzadeh, A. Ghaemi, M. Shirvani, Hydrodynamic performance evaluation of a novel eductor liquid-liquid extractor using CFD modeling, Chem. Eng. R&D, 126 (2017) 19-31 [14] M. Hosseinzadeh, M. Shirvani, A. Ghaemi, A study on mean drop size and drop size distribution in an eductor liquid-liquid extractor, Sep. Pur. Technol., 201 (2018) 205-213 [15] J. Gu, Q. Xu, H. Zhou, W. Li, J. Zhang, Liquid-liquid mass transfer property of two inline high shear mixers, Chemical Engineering and Processing: Process Intensification, 101 (2016) 16-24 [16] C.V. Rajagopalan, K. Periasamy, S.B. Koganti, Development of air pulsed ejector mixer-settlers of different capacities, Adv. Chem. Eng. Nuc. Proc. Ind., (1994) 517-523 [17] H. Sawistowski, Influence of mass‐transfer‐induced Marangoni effects on magnitude of interfacial area and equipment performance in mass transfer operations, Chem. Ing. Tech., 45 (18) (1973) 1114-1117 [18] D.K. Acharjee, A.K. Mztra, A.N. Roy, Co current flow liquid liquid binary mass transfer in ejectors, Can. J. Chem. Eng., 56 (1978) [19] A. Suresh, T.G. Srinivasan, P.R.V. Rao, C.V. Rajagopalan, S.B. Koganti, U/Th separation by counter‐current liquid-liquid extraction with tri‐sec butyl phosphate by using an ejector mixer-settler, Separ. Sci. Technol., 39 (10) (2004) 2477-2496 [20] H.C. Burkholder, J.C. Berg, Effect of mass transfer on laminar jet breakup: Part I. Liquid jets in gases, AIChE J., 20 (5) (1974) 863-872 [21] S. Kimura, T. Miyauchi, Mass transfer in a liquid—liquid laminar jet, Chem. Eng. Sci., 21 (11) (1966) 1057-1065 [22] H. Cheng, J. Zhao, J. Wang, Experimental investigation on the characteristics of melt jet breakup in water: The importance of surface tension and Rayleigh-Plateau instability, Ind. Eng. Chem. Res., 132 (2019) 388-393 [23] J. Saien, F. Ashrafi, Mass transfer enhancement in liquid- liquid extraction with very dilute aqueous salt solutions, Ind. Eng. Chem. Res., 48 (22) (2009) 10008-10014 [24] A. Tamir, Impinging-stream reactors: fundamentals and applications, Elsevier2014 [25] J. Saien, S. Daliri, Modelling mass transfer coefficient for liquid-liquid extraction with the interface adsorption of hydroxyl ions, Korean J. Chem. Eng., 26 (4) (2009) 963-968 [26] H. Zheng, W. Ren, K. Chen, Y. Gu, Z. Bai, S. Zhao, Influence of Marangoni convection on mass transfer in the n-propyl acetate/acetic acid/water system, Chem. Eng. Sci., 111 (2014) 278-285 [27] N. Maan, Mathematical modelling of mass transfer in a multi-stage rotating disc contactor column, Ph.D Thesis, Universiti Teknologi Malaysia, 2006. [28] M. Asadollahzadeh, A. Hemmati, M. Torab-Mostaedi, M. Shirvani, A. Ghaemi, Z. Mohsenzadeh, Use of axial dispersion model for determination of Sherwood number and mass transfer coefficients in a perforated rotating disc contactor, Chin. J. Chem. Eng., 25 (1) (2017) 53-61 [29] A. Hemmati, M. Shirvani, M. Torab-Mostaedi, A. Ghaemi, Mass transfer coefficients in a perforated rotating disc contactor (PRDC), Chem. Eng. Process, 100 (2016) 19-25 [30] L.N. Gomes, M.L. Guimaraes, J. Stichlmair, J.J. Cruz-Pinto, Effects of Mass Transfer on the Steady State and Dynamic Performance of a Kühni Column- Experimental Observations, Industrial & engineering chemistry research, 48 (7) (2009) 3580-3588 [31] M. Torab-Mostaedi, J. Safdari, A. Ghaemi, Mass transfer coeficients in pulsed perforated-plate extraction columns, Brazilian J. Chem. Eng., 27 (2) (2010) 243-251 [32] M. Asadollahzadeh, A. Ghaemi, M. Torab-Mostaedi, S. Shahhosseini, Experimental mass transfer coefficients in a pilot plant multistage column extractor, Chin. J. Chem. Eng., 24 (8) (2016) 989-999 [33] C. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J., 1 (2) (1955) 264-270 [34] A.F. Rusydi, Correlation between conductivity and total dissolved solid in various type of water: A review, IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2018, pp. 012019 [35] R.E. Treybal, Mass transfer operations, Mcgraw-Hill Book Company Inc., New York, 1980 [36] A. Nienow, Break-up, coalescence and catastrophic phase inversion in turbulent contactors, Adv. Colloid Interface Sci., 108 (2004) 95-103 [37] W.L. McCabe, J.C. Smith, P. Harriott, Unit operations of chemical engineering, McGraw-hill New York1993 [38] A. Skelland, Y.F. Huang, Dispersed phase mass transfer during drop formation under jetting conditions, AIChE J., 23 (5) (1977) 701-714 [39] A. Skelland, S.S. Minhas, Dispersed phase mass transfer during drop formation and coalescence in liquid‐liquid extraction, AIChE J., 17 (6) (1971) 1316-1324 [40] A. Skelland, R. Wellek, Resistance to mass transfer inside droplets, AIChE J., 10 (4) (1964) 491-496 [41] V. Kirou, L.L. Tavlarides, J. Bonnet, C. Tsouris, Flooding, holdup, and drop size measurements in a multistage column extractor, AIChE j., 34 (2) (1988) 283-292 [42] Y. Sun, Q. Zhao, L. Zhang, B. Jiang, Measurement and Correlation of the Mass-Transfer Coefficient for the Methyl Isobutyl Ketone-Water-Phenol System, Ind. Eng. Chem. Res., 53 (9) (2014) 3654-3661 [43] Z. Huang, C. Ye, L. Li, X. Zhang, T. Qiu, Measurement and correlation of the mass transfer coefficient for a liquid-liquid system with high density difference, Brazilian J. Chem. Eng., 33 (4) (2016) 897-906 [44] J. Saien, S.A.E. Zonouzian, A.M. Dehkordi, Investigation of a two impinging-jets contacting device for liquid-liquid extraction processes, Chem. Eng. Sci., 61 (12) (2006) 3942-3950 [45] A. Hemmati, M. Torab-Mostaedi, M. Asadollahzadeh, Mass transfer coefficients in a Kühni extraction column, Chem. Eng. Process, 93 (2015) 747-754 [46] M. Wegener, N. Paul, M. Kraume, Fluid dynamics and mass transfer at single droplets in liquid/liquid systems, Int. J. Heat Mass Transf., 71 (2014) 475-495 [47] Y.L. Lee, Surfactants effects on mass transfer during drop‐formation and drop falling stages, AIChE J., 49 (7) (2003) 1859-1869 [48] M. Hashem, A. El-Bassuoni, Drop formation mass transfer coefficients in extraction columns, Theor. Found. Chem. Eng., 41 (5) (2007) 506-511 [49] J. Petera, L. Weatherley, Modelling of mass transfer from falling droplets, Chem. Eng. Sci., 56 (16) (2001) 4929-4947 [50] D. Webster, E.K. Longmire, Jet pinch-off and drop formation in immiscible liquid-liquid systems, Exp. Fluids, 30 (1) (2001) 47-56 [51] T. Ban, F. Kawaizumi, S. Nii, K. Takahashi, Study of drop coalescence behavior for liquid-liquid extraction operation, Chem. Eng. Sci., 55 (22) (2000) 5385-5391 |