[1] R.V. Jagadeesh, H. Junge, M. Beller, Green synthesis of nitriles using non-noble metal oxides-based nanocatalysts, Nat. Commun. 5(2014)4123. [2] Y. Wang, S. Furukawa, X. Fu, N. Yan, Organonitrogen chemicals from oxygen-containing feedstock over heterogeneous catalysts, ACS Catal. 10(2020)311-335. [3] T. Punniyamurthy, S. Velusamy, J. Iqbal, Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen, Chem. Rev. 36(2005)2329-2363. [4] J. Schranck, A. Tlili, M. Beller, More sustainable formation of C-N and C-C bonds for the synthesis of N-heterocycles, Angew. Chem. Int. Ed. 52(2013) 7642-7644. [5] R.A. Sheldon, R.S. Downing, Heterogeneous catalytic transformations for environmentally friendly production, Appl. Catal. A 189(1999)163-183. [6] L.A. Isupova, Y.A. Ivanova, Removal of nitrous oxide in nitric acid production, Kinet. Catal. 60(2019)744-760. [7] J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R.M. Bullock, M.Y. Darensbourg, P.L. Holland, B. Hoffman, M.J. Janik, A.K. Jones, M.G. Kanatzidis, P. King, K.M. Lancaster, S.V. Lymar, P. Pfromm, W.F. Schneider, R.R. Schrock, Beyond fossil fuel-driven nitrogen transformations, Science 360(2018)1-7. [8] J. Seayad, A. Tillack, C.G. Hartung, M. Beller, Base-catalyzed hydroamination of olefins:an environmentally friendly route to amines, Adv. Synth. Catal. 344(2002)795-813. [9] Eco-profiles of plastics, PlasticsEurope.(2012-2019). https://www.plasticseurope.org/en/resources/eco-profiles. [10] P.T. Anastas, R.L. Lankey, Life cycle assessment and green chemistry:the yin and yang of industrial ecology, Green Chem. 2(2000)289-295. [11] R. Noyori, M. Aoki, K. Sato, Green oxidation with aqueous hydrogen peroxide, Chem. Commun. 16(2003)1977-1986. [12] L. Peng, C. Liu, N. Li, W. Zhong, L. Mao, S.R. Kirk, D. Yin, Direct cyclohexanone oxime synthesis via oxidation-oximization of cyclohexane with ammonium acetate, Chem. Commun. 56(2020)1436-1439. [13] X. Xiao, C. Guan, J. Xu, W. Fu, L. Yu, Selenium-catalyzed selective reactions of carbonyl derivatives:state-of-the-art and future challenges, Green Chem. 23(2021)4647-4655. [14] H. Cao, B. Zhu, Y. Yang, L. Xu, L. Yu, Q. Xu, Recent advances on controllable and selective catalytic oxidation of cyclohexene, Chin. J. Catal. 39(2018)899-907. [15] G. Gao, Y. Tian, X. Gong, Z. Pan, K. Yang, B. Zong, Advances in the production technology of hydrogen peroxide, Chin. J. Catal. 41(2020)1039-1047. [16] S. Wang, Y. Cheng, X. Zhang, B. Zong, Advances in hydrogenation catalyst for the production of hydrogen peroxide through the anthroquinone route, Chem. Ind. Eng. Prog. 36(2017)4057-4062. [17] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis:an outlook beyond the anthraquinone process, Angew. Chem. Int. Ed. 45(2006)6962-6984. [18] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Sunlight-driven hydrogen peroxide production from water and molecular oxygen by metal-free photocatalysts, Angew. Chem. Int. Ed. 53(2014)13454-13459. [19] D. Yao, Current situation and outlook of hydrogen peroxide production in China, Inorg. Chem. Ind. 45(2013)1-4. [20] Z. Pan, B. Zong, G. Gao, K. Yang, H2O2 production technology with slurry reactor, Sci. Sin. Chim. 45(2015)541-546. [21] W. Wang, Z. Pan, W. Li, B. Zheng, B. Zong, Recent advances in development of the fluidized bed and fixed bed in the anthraquinone route, Chem. Ind. Eng. Prog. 35(2016)1766-1773. [22] H. Li, B. Zheng, Z. Pan, B. Zong, M. Qiao, Advances in the slurry reactor technology of the anthraquinone process for H2O2 production, Front. Chem. Sci. Eng. 12(2018)124-131. [23] X. Shi, E. Yuan, G. Liu, L. Wang, Effects of porous oxide layer on performance of Pd-based monolithic catalysts for 2-ethylanthraquinone hydrogenation, Chin. J. Chem. Eng. 24(2016)1570-1576. [24] L. Wang, Y. Zhang, Q. Ma, Z. Pan, B. Zong, Hydrogenation of alkyl-anthraquinone over hydrophobically functionalized Pd/SBA-15 catalysts, RSC Adv. 9(2019)34581-34588. [25] S. Zheng, Z. Pan, X. Meng, X. Mu, B. Zong, A palladium based hydrogenation catalyst and its application in the hydrogenation of anthraquinone, CN CN Pat., 104549246B, 2013. [26] S. Zheng, Z. Pan, X. Meng, X. Mu, B. Zong, A hydrogenation catalyst and its Applications, CN Pat., 104549236B, 2013. [27] B. Zheng, J. Fei, B. Zong, Z. Pan, Z. Zhu, J. Mao, X. Tang, L. Hu, Production method of 2-alkylanthracene, CN Pat., 2017, p. 109574779B. [28] Y. Zhang, G. Gao, K. Yang, B. Zong, G. Xu, Qualitative analysis of compositions of anthraquinone series working solution by gas chromatography-mass spectrometry, Chin. J. Chromatogr. 37(2019)432-437. [29] J. Zhou, Research progress of oxidation tail gas treatment in hydrogen peroxide production plant, Peroxide Branch of China Inorganic Salt Association, Luoyang, China, 2013. [30] G. Gao, K. Yang, H. Li, B. Zong, An oxidation method of anthraquinone for producing hydrogen peroxide, CN Pat., 105271131B (2014). [31] J. Sebastian, M. Zheng, Y. Jiang, Y. Zhao, H. Wang, Z. Song, One-spot conversion of lysine to caprolactam over Ir/H-Beta catalysts, Green Chem. 21(2019)2462-2468. [32] J. Qi, Comparison and analysis of technology scheme for cyclohexanone production, Coal Chem. Ind. 41(2018)140-143. [33] H. Li, S. Fu, The introduction of chemical treatment technology for waste salt solution of cyclohexane oxidation, Spec. Petrochem. 05(2000)5-8.(in Chinese) [34] A.R. Silva, T. Mourão, J. Rocha, Oxidation of cyclohexane by transition-metal complexes with biomimetic ligands, Catal. Today 203(2013)81-86. [35] Y. She, J. Deng, L. Zhang, H. Shen, Catalytic oxidation of cyclohexane by O2 as an oxidant, Chem. Ind. Eng. Prog. 30(2018)124-136. [36] F. Steyer, K. Sundmacher, VLE and LLE data for the system cyclohexane+ cyclohexene+water+cyclohexanol, J. Chem. Eng. Data 49(2004)1675-1681. [37] Y. Xing, P. Zhao, Production process technical comparison of cyclohexanone, which is a raw material of caprolactam production, Chem. Eng. Equip. 03(2015)27-30.(in Chinese) [38] B. Saha, M.M. Sharma, Esterification of formic acid, acrylic acid and methacrylic acid with cyclohexene in batch and distillation column reactors:ion-exchange resins as catalysts, React. Funct. Polym. 28(1996) 263-278. [39] B. Zong, D. Ma, L. Wen, B. Sun, K. Yang, Process and apparatus for co-producing cyclohexanol and alkanol, US9561991B2, 2012. [40] Y. Zhu, L. Gao, L. Wen, B. Zong, H. Wang, M. Qiao, Cyclohexene esterification-hydrogenation for efficient production of cyclohexanol, Green Chem. 23(2021)1185-1192. [41] T. Marco, P. Giovanni, N. Bruno, Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides, US Pat., 4410501A (1979). [42] M. Lin, X. Shu, X. Wang, B. Zhu, Titanium-silicalite molecular sieve and the method for its preparation, US Pat., 6475465B2(1999). [43] B. Sun, Study on dissolution erosion of titanium silicalite zeolite in cyclohexanone ammoximation, Pet. Process. Petrochem. 36(2005)54-57. [44] B. Sun, W. Wu, E. Wang, Y. Li, S. Zhang, L. Hu, Process for regenerating titanium-containing catalysts, US Pat., 7384882B2,(2002). [45] W. Wu, B. Sun, Y. Li, S. Cheng, E. Wang, S. Zhang, Process for ammoximation of carbonyl compounds, US Pat., 7408080B2(2002). [46] B. Zong, B. Sun, S. Cheng, X. Mu, K. Yang, J. Zhao, X. Zhang, W. Wu, Green production technology of the monomer of nylon-6:caprolactam, Engineering 3(2017)379-384. [47] G. Bellussi, C. Perego, Industrial catalytic aspects of the synthesis of monomers for nylon production, CATTECH 4(2000)4-16. [48] B. Zong,"973" plans promoting the sustainable development of China petrochemical industry, Acta Pet. Sin Pet. Process. Sect. 31(2015)259-264. [49] J. Liu, L. Liu, S. Wang, Z. Li, Y. Zhang, X. Ding, D. Zhang, X. Zhao, Y. Wang, Research progress of ketoxime hydrolysis reaction and its hydroxylamine product separation, Chem. Ind. Eng. Prog. 39(2020)4147-4154. [50] Y. Xu, Q. Yang, Z. Li, L. Gao, D. Zhang, S. Wang, X. Zhao, Y. Wang, Ammoximation of cyclohexanone to cyclohexanone oxime using ammonium chloride as nitrogen source, Chem. Eng. Sci. 152(2016)717-723. [51] F. Zhao, K. You, C. Peng, S. Tan, R. Li, P. Liu, J. Wu, H. Luo, A simple and efficient approach for preparation of hydroxylamine sulfate from the acid-catalyzed hydrolysis reaction of cyclohexanone oxime, Chem. Eng. J. 272(2015)102-107. [52] C. Peng, Y. Wang, C. Deng, F. Zhao, K. You, Preparation of hydroxylamine sulfate by continuous reaction-extraction coupling technology, CIESC J. 70(2019)1842-1847.(in Chinese) [53] Y. Yang, C. Xia, M. Lin, B. Zhu, X. Peng, Y. Luo, X. Shu, Ammoximation reaction mechanism of benzaldehyde or cyclohexanone catalyzed by TS-1 zeolite, Acta Pet. Sin., Pet. Process. Sect. 36(2020)653-660. [54] A. Zecchina, S. Bordiga, C. Lamberti, G. Ricchiardi, C. Lamberti, G. Ricchiardi, D. Scarano, G. Petrini, G. Leofanti, M. Mantegazza, Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation, Catal. Today 32(1996)97-106. [55] M.A. Mantegazza, G. Leofanti, G. Petrini, M. Padovan, A. Zecchina, S. Bordiga, Selective oxidation of ammonia to hydroxylamine with hydrogen peroxide on titanium based catalysts, Stud. Surf. Sci. Catal. 82(1994)541-550. [56] M. Maria A, P. Mario, P. Guido, R. Paolo, Direct catalytic process for the production of hydroxylamine, US Pat., 5320819A (1991). [57] J. Fu, B. Xiao, J. Tu, Progress of the research for reactions between NOx and SO2, Chem. Ind. Eng. Prog. 18(1999)26-28.(in Chinese) [58] J.K. Niemeier, D.P. Kjell, Hydrazine and aqueous hydrazine solutions: evaluating safety in chemical processes, Org. Process Res. Dev. 17(2013) 1580-1590. [59] S.K. Singh, A.K. Singh, K. Aranishi, Q. Xu, Noble-metal-free bimetallic nanoparticle-catalyzed selective hydrogen generation from hydrous hydrazine for chemical hydrogen storage, J. Am. Chem. Soc. 133(2011) 19638-19641. [60] Z. Zhou, S. Shi, Comparison on production technology of hydrazine hydrate by ketoneazide method and urea method, J. Salt Sci. Chem. Ind. 48(2019)5-8. [61] J. Ma, M. Liu, F. Lou, Research summary of catalysts for synthesizing ketazine by method of hydrogen peroxide, Chem. Propellants Polym. Mater. 7(2009) 26-28. [62] H. Hayashi, K. Kawasaki, T. Murata, NH4Cl-CuCl as a catalyst for the synthesis of ketazine directly from benzophenone, ammonia and oxygen, Chem. Lett. 3(1974)1079-1080. [63] S.B. Umbarkar, A.V. Biradar, S.M. Mathew, S.B. Shelke, K.M. Malshe, P.T. Patil, S.P. Dagde, S.P. Niphadkar, M.K. Dongare, Vapor phase nitration of benzene using mesoporous MoO3/SiO2 solid acid catalyst, Green Chem. 8(2006)488-493. [64] X. Ma, B. Li, M. Lu, C. Lv, Rare earth metal triflates catalyzed electrophilic nitration using N2O5, Chin. Chem. Lett. 23(2012)73-76. [65] E.A. Gelder, S.D. Jackson, C.M. Lok, The hydrogenation of nitrobenzene to aniline:a new mechanism, Chem. Commun. 28(4)(2005)522-524. [66] L. Wang, E. Guan, J. Zhang, J. Yang, Y. Zhu, Y. Han, M. Yang, C. Cen, G. Fu, B.C. Gates, F.S. Xiao, Single-site catalyst promoters accelerate metal-catalyzed nitroarene hydrogenation, Nat. Commun. 9(2018)1-8. [67] M. Wang, H. Li, Liquid-Phase hydrogenation of nitrobenzene to aniline over Ni-B/SiO2 amorphous catalyst, Chin. J. Catal. 22(2001)287-290. [68] B. Lu, X. Liu, Z. Yin, B. Huang, Recent development on doped porous carbon materials for catalytic reduction of nitrobenzene, Chem. Ind. Eng. Prog. 40(2021)778-788. [69] N.I. Kuznetsova, L.I. Kuznetsova, L.G. Detusheva, V.A. Likholobov, G.P. Pez, H. Cheng, Amination of benzene and toluene with hydroxylamine in the presence of transition metal redox catalysts, J. Mol. Catal. A:Chem. 161(2000)1-9. [70] L.F. Zhu, B. Guo, D.Y. Tang, X.K. Hu, G.Y. Li, C.W. Hu, Sodium metavanadate catalyzed one-step amination of benzene to aniline with hydroxylamine, J. Catal. 245(2007)446-455. [71] N. Hoffmann, E. Löffler, N.A. Breuer, M. Muhler, On the nature of the active site for the oxidative amination of benzene to aniline over NiO/ZrO2 as cataloreactant, ChemSusChem 1(2008)393-396. [72] P. Desrosiers, S. Guan, A. Hagemeyer, D.M. Lowe, C. Lugmair, D.M. Poojary, H. Turner, H. Weinberg, X. Zhou, R. Armbrust, G. Fengler, U. Notheis, Application of combinatorial catalysis for the direct amination of benzene to aniline, Catal. Today 81(2003)319-328. [73] C. Hu, L. Zhu, Y. Xia, Direct amination of benzene to aniline by aqueous ammonia and hydrogen peroxide over V Ni/Al2O3 catalyst with catalytic distillation, Ind. Eng. Chem. Res. 46(2007)3443-3445. [74] B. Guo, Q. Zhang, G. Li, J. Yao, C. Hu, Aromatic C-N bond formation via simultaneous activation of C-H and N-H bonds:direct oxyamination of benzene to aniline, Green Chem. 14(2012)1880-1883. [75] T. Yu, Q. Zhang, S. Xia, G. Li, C. Hu, Direct amination of benzene to aniline by reactive distillation method over copper doped hierarchical TS-1 catalyst, Catal. Sci. Technol. 4(2014)639-647. [76] M. Nan, Y. Luo, G. Li, C. Hu, Improvement of the selectivity to aniline in benzene amination over Cu/TS-1 by potassium, RSC Adv. 7(2017)21974-21981. [77] H. Yuzawa, H. Yoshida, Direct aromatic-ring amination by aqueous ammonia with a platinum loaded titanium oxide photocatalyst, Chem. Commun. 46(2010)8854-8856. [78] T.A. Nijhuis, B.J. Huizinga, M. Makkee, J.A. Moulijn, Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports, Ind. Eng. Chem. Res. 38(1999)884-891. [79] B. Qian, Progress in production technology of propylene oxide, Chem. Propellants Polym. Mater. 4(2006)14-18. [80] Z. Xi, N. Zhou, Y. Sun, K. Li, Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide, Science 292(2001)1139-1141. [81] B. Zhu, Study on catalytic material used in HPPO process, Acta Pet. Sin. Pet. Process. Sect. 29(2013)223-227. [82] M. Lin, H. Li, W. Wang, C. He, X. Wu, J. Gao, An olefin epoxidation catalyst, its preparation method, and a method for epoxidation of olefin, CN Pat., 102441429B (2010). [83] W. Wang, J. Gao, H. Li, M. Lin, C. He, X. Wu, X. She, A catalyst, its preparation method and alkene epoxidation method, CN Pat,, 102441430B (2010). [84] H. Li, M. Lin, W. Wang, C. He, X. Wu, J. Gao, A regeneration method of olefin epoxidation catalyst and an olefin epoxidizing method, CN Pat., 102441445B (2010). [85] M. Lin, H. Li, C. He, W. Wang, X. Wu, J. Gao, An alkene epoxidation method, CN Pat., 102442978B (2010). [86] M. Lin, H. Li, W. Wang, J. Long, The preparation of propylene oxide by propylene epoxidation with hydrogen peroxide in 1.0 kt/a pilot plant, Pet. Process. Petrochem. 44(2013)1-4. [87] S. Liu, J. Li, Q. An, L. Wang, Research progress of epoxidation of allyl chloride to epichlorohydrin, Chem. Bulletin.(2010)622-626. [88] R.K. Pandey, R. Kumar, Eco-friendly synthesis of epichlorohydrin catalyzed by titanium silicate (TS-1) molecular sieve and hydrogen peroxide, Catal. Commun. 8(2007)379-382. [89] S. Zhang, H. Zheng, M. Zhu, Technology progress and tech-economic properties on production of epoxy chloropropane, Appl. Chem. Ind.(2014) 32-35.(in Chinese) [90] C. Guo, Comparison between glycerol process and direct epoxidation process of allyl chloride for epichlorohydrin synthesis, Chlor-Alkali Ind. 50(2014)27-29. [91] M.G. Clerici, G. Bellussi, U. Romano, Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite, J. Catal. 129(1991)159-167. [92] L. Wang, Y. Liu, W. Xie, H. Zhang, H. Wu, Y. Jiang, M. He, P. Wu, Highly efficient and selective production of epichlorohydrin through epoxidation of allyl chloride with hydrogen peroxide over Ti-MWW catalysts, J. Catal. 246(2007) 205-214. [93] W. Kim, C. Yun, Y. Kim, J. Park, S. Park, K.T. Jung, Y.H. Lee, S.H. Kim, Modeling of a tubular reactor producing epichlorohydrin with consideration of reaction kinetics and deactivation of titanium silicate-1 catalyst, Ind. Eng. Chem. Res. 50(2011)1187-1195. [94] H. Gao, G. Lu, J. Suo, S. Li, Epoxidation of allyl chloride with hydrogen peroxide catalyzed by titanium silicalite 1, Appl. Catal. A 138(1996)27-38. [95] C. Mario, G.R. Ugo, Process for the epoxidation of olefinic compounds and catalysts used therein, US Pat., 4824976A (1986). [96] S. Liu, S. Zhang, G. Zhao, J. Li, Q. An, S. Gao, Epoxidation of allyl chloride with H2O2 catalyzed by reaction-controlled phase-transfer catalyst under solvent-free conditions, J. Mol. Catal.(China)24(2010)387-391. [97] G. Zhao, J. Li, G. Zhang, Y. Lv, Z. Xi, S. Gao, Epoxidation of allyl chloride to epichlorohydrin by reversibly supported catalyst heteropolyphosphatotungstates/SiO2, Chin. J. Catal.(Chin. Ed.)29(2008) 509-512. [98] Z. Du, Y. Zhang, E. Min, Production method of epichlorohydrin, CN Pat, 2003, p. 1275952C. [99] Y. Zhang, Y. Liu, Z. Du, A TS zeolite catalyst, its preparation method and use, CN Pat., 102259023B (2010). [100] M. Lin, C. Shi, B. Zhu, A method for oxidizing chloropropene, CN Pat., 102757408B (2011). [101] Y. Zhang, Y. Xiong, Y. Liu, Z. Du, Study on the deactivation of TS 1 molecular sieve in catalyzing allyl chloride direct epoxidation, Pet. Process. Petrochem. 37(2006)21-24. [102] Y. Zhang, Z. Du, Y. Liu, Method for continuously producing epichlorohydrin, CN Pat., 101747297B (2008). [103] Y. Zhang, Z. Du, Y. Liu, X. Jin, Process for the separation of epichlorohydrin, CN Pat., 101293882B (2007). [104] Y. Liu, Y. Zhang, Z. Du, Catalyst and a method for decomposing hydrogen peroxide, CN Pat., 106140148B (2015). [105] G. Centi, S. Perathoner, One-step H2O2 and phenol syntheses:examples of challenges for new sustainable selective oxidation processes, Catal. Today 143(2009)145-150. [106] X. Zhang, Direct hydroxylation of benzene to phenol, Prog. Chem 20(2008) 386-395.(in Chinese) [107] W. Wang, M. Yao, Y. Ma, J. Zhang, Direct oxidation of liquid benzene to phenol with molecular oxygen, Prog. Chem.(Beijing, China)26(2014)1665-1672. [108] D. Bianchi, R. Bortolo, R. Tassinari, M. Ricci, R. Vignola, A novel iron-based catalyst for the biphasic oxidation of benzene to phenol with hydrogen peroxide, Angew. Chem. Int. Ed. 39(2000)4321-4323. [109] F. Zhang, M. Guo, H. Ge, J. Wang, Hydroxylation of benzene with hydrogen peroxide over highly efficient molybdovanadophosphoric heteropoly acid catalysts, Chin. J. Chem. Eng. 15(2007)895-898. [110] P.M. Reis, J. Armando, L. Silva, J.J.R.F. da Silva, A.J.L. Pombeiro, Amavadine as a catalyst for the peroxidative halogenation, hydroxylation and oxygenation of alkanes and benzene, Chem. Commun. 19(2000)1845-1846. [111] T. Jiang, W. Wang, B. Han, Catalytic hydroxylation of benzene to phenol with hydrogen peroxide using catalysts based on molecular sieves, New J. Chem. 37(2013)1654-1664. [112] P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds, Nature 368(1994)321-323. [113] P. Borah, A. Datta, K.T. Nguyen, Y. Zhao, VOPO4 2H2O encapsulated in graphene oxide as a heterogeneous catalyst for selective hydroxylation of benzene to phenol, Green Chem. 18(2016)397-401. [114] P. Borah, X. Ma, K.T. Nguyen, Y. Zhao, A vanadyl complex grafted to periodic mesoporous organosilica:a green catalyst for selective hydroxylation of benzene to phenol, Angew. Chem. Int. Ed. 51(2012)7756-7761. [115] J. Peng, F. Shi, Y. Gu, Y. Deng, Highly selective and green aqueous-ionic liquid biphasic hydroxylation of benzene to phenol with hydrogen peroxide, Green Chem. 5(2003)224-226. [116] S.I. Niwa, A one-step conversion of benzene to phenol with a palladium membrane, Science 295(2002)105-107. [117] C. Xia, L. Long, B. Zhu, M. Lin, X. Shu, Enhancing the selectivity of Pare-dihydroxybenzene in hollow titanium silicalite zeolite catalyzed phenol hydroxylation by introducing acid-base sites, Catal. Commun. 80(2016)49-52. [118] C. Xia, M. Lin, B. Zhu, X. Peng, Regeneration of irreversible deactivated hollow titanium silicalite zeolite from commercial cyclohexanone ammoximation process, Acta Pet. Sin., Pet. Process. Sect. 34(2018)246-252. [119] L. Hai, T. Zhang, B. Li, S. Jiang, Design and performance of catalysts for direct hydroxylation of phenol to dihydroxybenzene, Prog. Chem. 29(2017)785-795.(in Chinese) |