[1] D.-L. Zhong, K. Ding, Y.-Y. Lu, J. Yan, W.-L. Zhao, Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions, Appl. Energy 162 (2016) 1619-1626 [2] C.Ö. Karacan, F.A. Ruiz, M. Cotè, S. Phipps, Coal mine methane:A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction, Int. J. Coal Geol. 86 (2-3) (2011) 121-156 [3] W. Chen, X.N. Guo, E.B. Zou, M.L. Luo, M.Z.J. Chen, M.K. Yang, H. Li, C.Z. Jia, C. Deng, C.Y. Sun, B. Liu, L.Y. Yang, G.J. Chen, A continuous and high-efficiency process to separate coal bed methane with porous ZIF-8 slurry:Experimental study and mathematical modelling, Green Energy Environ. 5 (3) (2020) 347-363 [4] V.I.Á. Maté, J.A.D. Dobladez, S. Álvarez-Torrellas, M. Larriba, Á.M. Rodríguez, Modeling and simulation of the efficient separation of methane/nitrogen mixtures with[Ni3(HCOO)6] MOF by PSA, Chem. Eng. J. 361 (2019) 1007-1018 [5] V. Mozaffari, M. Sadeghi, A. Fakhar, G. Khanbabaei, A.F. Ismail, Gas separation properties of polyurethane/poly (ether-block-amide)(PU/PEBA) blend membranes, Sep. Purif. Technol. 185 (2017) 202-214 [6] J.C. Zhu, X.X. Meng, J.P. Zhao, Y. Jin, N.T. Yang, S.G. Zhang, J. Sunarso, S.M. Liu, Facile hydrogen/nitrogen separation through graphene oxide membranes supported on YSZ ceramic hollow fibers, J. Membr. Sci. 535 (2017) 143-150 [7] J.Q. Wang, M.S. Zhou, D.N. Lu, W.Y. Fei, J.Z. Wu, Computational screening and design of nanoporous membranes for efficient carbon isotope separation, Green Energy Environ. 5 (3) (2020) 364-373 [8] R.W. Baker, B.T. Low, Gas separation membrane materials:A perspective, Macromolecules 47 (20) (2014) 6999-7013 [9] T.-S. Chung, L.Y. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Prog. Polym. Sci. 32 (4) (2007) 483-507 [10] Z.F. Wang, S.N. Zhang, Y. Chen, Z.J. Zhang, S.Q. Ma, Covalent organic frameworks for separation applications, Chem. Soc. Rev. 49 (3) (2020) 708-735 [11] M.S. Lohse, T. Bein, Covalent organic frameworks:Structures, synthesis, and applications, Adv. Funct. Mater. 28 (33) (2018) 1705553 [12] C.C. Zou, Q.Q. Li, Y.Y. Hua, B.H. Zhou, J.G. Duan, W.Q. Jin, Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal, ACS Appl. Mater. Interfaces 9 (34) (2017) 29093-29100 [13] H.W. Fan, A. Mundstock, J.H. Gu, H. Meng, J. Caro, An azine-linked covalent organic framework ACOF-1 membrane for highly selective CO2/CH4 separation, J. Mater. Chem. A 6 (35) (2018) 16849-16853 [14] X.Y. Wu, Z.Z. Tian, S.F. Wang, D.D. Peng, L.X. Yang, Y.Z. Wu, Q.P. Xin, H. Wu, Z.Y. Jiang, Mixed matrix membranes comprising polymers of intrinsic microporosity and covalent organic framework for gas separation, J. Membr. Sci. 528 (2017) 273-283 [15] D. Ongari, A.V. Yakutovich, L. Talirz, B. Smit, Building a consistent and reproducible database for adsorption evaluation in covalent-organic frameworks, ACS Cent. Sci. 5 (10) (2019) 1663-1675 [16] S. Keskin, Adsorption, diffusion, and separation of CH4/H2 mixtures in covalent organic frameworks:molecular simulations and theoretical predictions, J. Phys. Chem. C 116 (2) (2012) 1772-1779 [17] M.M. Tong, Q.Y. Yang, Q.T. Ma, D.H. Liu, C.L. Zhong, Few-layered ultrathin covalent organic framework membranes for gas separation:a computational study, J. Mater. Chem. A 4 (1) (2016) 124-131 [18] Y.P. Ying, D.H. Liu, J. Ma, M.M. Tong, W.X. Zhang, H.L. Huang, Q.Y. Yang, C.L. Zhong, A GO-assisted method for the preparation of ultrathin covalent organic framework membranes for gas separation, J. Mater. Chem. A 4 (35) (2016) 13444-13449 [19] Y.J. Zhao, P. Liu, Y.P. Ying, K.P. Wei, D. Zhao, D.H. Liu, Heating-driven assembly of covalent organic framework nanosheets for gas separation, J. Membr. Sci. 632 (2021) 119326 [20] T.A. Yan, Y.S. Lan, M.M. Tong, C.L. Zhong, Screening and design of covalent organic framework membranes for CO2/CH4 separation, ACS Sustainable Chem. Eng. 7 (1) (2018) 1220-1227 [21] T.F. Willems, C. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater. 149 (1) (2012) 134-141 [22] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes, J. Phys. Chem. B 102 (14) (1998) 2569-2577 [23] P.P. Ewald, The calculation of optical and electrostatic grid potential, Ann. Phys 64 (3) (1921) 253-287 [24] C.E. Wilmer, R.Q. Snurr, Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture:Calculation of framework charges via charge equilibration, Chem. Eng. J. 171 (3) (2011) 775-781 [25] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING:A generic force field for molecular simulations, J. Phys. Chem. 94 (26) (1990) 8897-8909 [26] A.K. Rappé, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (25) (1992) 10024-10035 [27] D.B. Robinson, D.-Y. Peng, S.Y.-K Chung, The development of the Peng-Robinson equation and its application to phase equilibrium in a system containing methanol, Fluid Phase Equilib. 24 (1-2) (1985) 25-41 [28] G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein, Explicit reversible integrators for extended systems dynamics, Mol. Phys. 87 (5) (1996) 1117-1157 [29] F.J. Keil, R. Krishna, M.-O. Coppens, Modeling of diffusion in zeolites, Rev. Chem. Eng. 16 (2) (2000) 71-197 [30] S. Keskin, D.S. Sholl, Efficient methods for screening of metal organic framework membranes for gas separations using atomically detailed models, Langmuir 25 (19) (2009) 11786-11795 [31] R. Krishna, J.M. van Baten, In silico screening of zeolite membranes for CO2 capture, J. Membr. Sci. 360 (1-2) (2010) 323-333 [32] J.C. Maxwell, A Treatise on Electricity and Magnetism, New York, Oxford, 1873 [33] L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci. 62 (2) (1991) 165-185 [34] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320 (1-2) (2008) 390-400 [35] S. Kandambeth, B.P. Biswal, H.D. Chaudhari, K.C. Rout, H.S. Kunjattu, S. Mitra, S. Karak, A. Das, R. Mukherjee, U.K. Kharul, R. Banerjee, Selective molecular sieving in self-standing porous covalent-organic-framework membranes, Adv. Mater. 29 (2) (2017) 1603945 [36] H.W. Fan, A. Mundstock, A. Feldhoff, A. Knebel, J.H. Gu, H. Meng, J. Caro, Covalent organic framework-covalent organic framework bilayer membranes for highly selective gas separation, J. Am. Chem. Soc. 140 (32) (2018) 10094-10098 [37] Y.Y. Liu, G.F. Zeng, Y.C. Pan, Z.P. Lai, Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties, J. Membr. Sci. 379 (1-2) (2011) 46-51 [38] S.R. Venna, M.A. Carreon, Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation, J. Am. Chem. Soc. 132 (1) (2010) 76-78 [39] J.A. Bohrman, M.A. Carreon, Synthesis and CO2/CH4 separation performance of Bio-MOF-1 membranes, Chem. Commun. 48 (42) (2012) 5130-5132 [40] M. Shan, B. Seoane, E. Rozhko, A. Dikhtiarenko, G. Clet, F. Kapteijn, J. Gascon, Azine-linked covalent organic framework (COF)-based mixed-matrix membranes for CO2/CH4 Separation, Chem. Eur. J. 22 (41) (2016) 14467-14470 [41] R.L. Thankamony, X. Li, S.K. Das, M.M. Ostwal, Z.P. Lai, Porous covalent triazine piperazine polymer (CTPP)/Pebax mixed matrix membranes for CO2/N2 and CO2/CH4 separations, J. Membr. Sci. 591 (2019) 117348 [42] K. Duan, J. Wang, Y.T. Zhang, J.D. Liu, Covalent organic frameworks (COFs) functionalized mixed matrix membrane for effective CO2/N2 separation, J. Membr. Sci. 572 (2019) 588-595 [43] S.A. Stern, V.M. Shah, B.J. Hardy, Structure-permeability relationships in silicone polymers, J. Polym. Sci., Part B:Polym. Phys. 25 (6) (1987) 1263-1298 [44] M.G. Buonomenna, G. Golemme, C.M. Tone, M.P. De Santo, F. Ciuchi, E. Perrotta, Nanostructured poly (styrene-b-butadiene-b-styrene)(SBS) membranes for the separation of nitrogen from natural gas, Adv. Funct. Mater. 22 (8) (2012) 1759-1767 [45] V. Nafisi, M.-B. Hägg, Development of dual layer of ZIF-8/Pebax-2533 mixed matrix membrane for CO2 capture, J. Membr. Sci. 459 (2014) 244-255 [46] H. Daglar, I. Erucar, S. Keskin, Exploring the performance limits of MOF/polymer MMMs for O2/N2 separation using computational screening, J. Membr. Sci. 618 (2021) 118555 [47] A.N.V. Azar, S. Velioglu, S. Keskin, Large-scale computational screening of metal organic framework (MOF) membranes and MOF-based polymer membranes for H2/N2 separations, ACS Sustainable Chem. Eng. 7 (10) (2019) 9525-9536 [48] H. Daglar, S. Keskin, High-throughput screening of metal organic frameworks as fillers in mixed matrix membranes for flue gas separation, Adv. Theor. Simul. 2 (11) (2019) 1900109 [49] B.J. Sikora, C.E. Wilmer, M.L. Greenfield, R.Q. Snurr, Thermodynamic analysis of Xe/Kr selectivity in over 137000 hypothetical metal-organic frameworks, Chem. Sci. 3 (7) (2012) 2217-2223 [50] Y.S. Lan, X.H. Han, M.M. Tong, H.L. Huang, Q.Y. Yang, D.H. Liu, X. Zhao, C.L. Zhong, Materials genomics methods for high-throughput construction of COFs and targeted synthesis, Nat. Commun. 9 (2018) 5274 [51] S.M. Wang, Q.P. Guo, S.J. Liang, P. Li, J.J. Luo, Preparation of Ni-MOF-74/SBS mixed matrix membranes and its application of CH4/N2 separation, Sep. Purif. Technol. 199 (2018) 206-213 [52] M.G. Buonomenna, G. Golemme, C.M. Tone, M.P. De Santo, F. Ciuchi, E. Perrotta, Amine-functionalized SBA-15 in poly (styrene-b-butadiene-b-styrene)(SBS) yields permeable and selective nanostructured membranes for gas separation, J. Mater. Chem. A 1 (38) (2013) 11853-11866 [53] J.H. Zhang, Q.P. Xin, X. Li, M.Y. Yun, R. Xu, S.F. Wang, Y.F. Li, L.G. Lin, X.L. Ding, H. Ye, Y.Z. Zhang, Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation, J. Membr. Sci. 570 (2019) 343-354 [54] S. Meshkat, S. Kaliaguine, D. Rodrigue, Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax®MH-1657 for CO2 separation, Sep. Purif. Technol. 200 (2018) 177-190 |