中国化学工程学报 ›› 2022, Vol. 42 ›› Issue (2): 151-169.DOI: 10.1016/j.cjche.2021.08.032
• Recent Advances in Adsorptive Separation Materials and Technologies • 上一篇 下一篇
Boya Qiu1, Patricia Gorgojo1,2,3, Xiaolei Fan1
收稿日期:
2021-06-30
修回日期:
2021-08-18
出版日期:
2022-02-28
发布日期:
2022-03-30
通讯作者:
Boya Qiu,E-mail:boya.qiu@postgrad.manchester.ac.uk;Patricia Gorgojo,E-mail:p.gorgojo@manchester.ac.uk
基金资助:
Boya Qiu1, Patricia Gorgojo1,2,3, Xiaolei Fan1
Received:
2021-06-30
Revised:
2021-08-18
Online:
2022-02-28
Published:
2022-03-30
Contact:
Boya Qiu,E-mail:boya.qiu@postgrad.manchester.ac.uk;Patricia Gorgojo,E-mail:p.gorgojo@manchester.ac.uk
Supported by:
摘要: With the continuous growth of the world population, the demand for fresh water is ever increasing. Water desalination is a means of producing fresh water from saline water, and one of the proposed solutions in the scientific community for solving the current global freshwater shortage. Adsorption is foreseen as a promising technology for desalination due to its relatively low energy requirements, low environmental impact, low cost and high salt removal efficiency. More importantly, chemicals are not required in adsorption processes. Active carbons, zeolites, carbon nanostructures, graphene and coordination framework materials are amongst the most investigated adsorbents for adsorption desalination, which show different performances regarding adsorption rate, adsorption capacity, stability and recyclability. In this review, the latest adsorbent materials with their features are assessed (using metrics) and commented critically, and the current trend for their development is discussed. The adsorption mode is also reviewed, which can provide guidance for the design of adsorbents from the engineering application point of view.
Boya Qiu, Patricia Gorgojo, Xiaolei Fan. Adsorption desalination: Advances in porous adsorbents[J]. 中国化学工程学报, 2022, 42(2): 151-169.
Boya Qiu, Patricia Gorgojo, Xiaolei Fan. Adsorption desalination: Advances in porous adsorbents[J]. Chinese Journal of Chemical Engineering, 2022, 42(2): 151-169.
[1] | R.F. Service, Desalination Freshens Up, Science, 313 (2006) 1088 |
[2] | M. Elimelech, W.A. Phillip, The future of seawater desalination:Energy, technology, and the environment, Science 333 (6043) (2011) 712-717 |
[3] | Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM, Science and technology for water purification in the coming decades, Nature 452 (7185) (2008) 301-310 |
[4] | Q. Schiermeier, Water:Purification with a pinch of salt, Nature 452 (7185) (2008) 260-261 |
[5] | C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination 216 (1-3) (2007) 1-76 |
[6] | Does size matter? Meet ten of the world's largest desalination plants, in, RAI Amsterdam Aquatechtrade, 2021. |
[7] | N.R.C. (U.S.), Desalination:A National Perspective, in, National Academies Press, Washington, DC, 2008. |
[8] | F.E. Ahmed, R. Hashaikeh, N. Hilal, Solar powered desalination-Technology, energy and future outlook, Desalination 453 (2019) 54-76 |
[9] | D. Dsilva Winfred Rufuss, S. Iniyan, L. Suganthi, P.A. Davies, Solar stills:A comprehensive review of designs, performance and material advances, Renew. Sustain. Energy Rev. 63 (2016) 464-496. |
[10] | T. Younos, K.E. Tulou, Overview of desalination techniques, J. Contemp. Water Res. Educ. 132 (1) (2009):3-10 |
[11] | C. Skuse, A. Gallego-Schmid, A. Azapagic, P. Gorgojo, Can emerging membrane-based desalination technologies replace reverse osmosis?Desalination 500 (2021) 114844 |
[12] | K. C. Ng, X.L.Wang, L. Gao, A. Chakraborty, B. B. Saha, S. Koyama, A. Akisawa, Ta. Kashiwagi, Apparatus and method for desalination, US Pat.US08535486B2 (2006). |
[13] | K.C. Ng, K. Thu, Y. Hideharu, B.B. Saha, A. Chakraborty, T. Al-Ghasham, Apparatus and method for improved desalination, Pat. SG170810B (2019). |
[14] | X.S.Z. G. Q. Lu, Nanoporous Materials-An overview, Nanoporous Mater. Sci. Eng., 4 (2004) 1-13 |
[15] | Alaei Shahmirzadi MA, Hosseini SS, Luo J, Ortiz I, Significance, evolution and recent advances in adsorption technology, materials and processes for desalination, water softening and salt removal, J Environ Manage 215 (2018) 324-344 |
[16] | O.K. Bishoge, L.L. Zhang, S.L. Suntu, H. Jin, A.A. Zewde, Z.W. Qi, Remediation of water and wastewater by using engineered nanomaterials:A review, J Environ Sci Health A Tox Hazard Subst Environ Eng 53 (6) (2018) 537-554 |
[17] | M.O. Mavukkandy, C.M. Chabib, I. Mustafa, A. Al Ghaferi, F. AlMarzooqi, Brine management in desalination industry:From waste to resources generation, Desalination 472 (2019) 114187 |
[18] | K. Thu, A. Chakraborty, B.B. Saha, K.C. Ng, Thermo-physical properties of silica gel for adsorption desalination cycle, Appl. Therm. Eng. 50 (2) (2013) 1596-1602 |
[19] | A.S. Alsaman, A.A. Askalany, K. Harby, M.S. Ahmed, A state of the art of hybrid adsorption desalination-cooling systems, Renew. Sustain. Energy Rev. 58 (2016) 692-703 |
[20] | J. Rivera-Utrilla, M. Sánchez-Polo, V. Gómez-Serrano, P.M. Alvarez, M.C. Alvim-Ferraz, J.M. Dias, Activated carbon modifications to enhance its water treatment applications. An overview, J Hazard Mater 187 (1-3) (2011) 1-23 |
[21] | F.L. Fu, Q. Wang, Removal of heavy metal ions from wastewaters:A review, J Environ Manage 92 (3) (2011) 407-418 |
[22] | A. Méndez, G. Gascó, Optimization of water desalination using carbon-based adsorbents, Desalination 183 (1-3) (2005) 249-255 |
[23] | A. Macías-García, C. Valenzuela-Calahorro, V. Gómez-Serrano, A. Espínosa-Mansilla, Adsorption of Pb2+ by heat-treated and sulfurized activated carbon, Carbon 31 (8) (1993) 1249-1255 |
[24] | J. Goel, K. Kadirvelu, C. Rajagopal, V. Kumar Garg, Removal of lead(II) by adsorption using treated granular activated carbon:Batch and column studies, J Hazard Mater 125 (1-3) (2005) 211-220 |
[25] | W.G. Feng, E. Borguet, R.D. Vidic, Sulfurization of a carbon surface for vapor phase mercury removal-II:Sulfur forms and mercury uptake, Carbon 44 (14) (2006) 2998-3004 |
[26] | G. Skodras, T. Orfanoudaki, E. Kakaras, G.P. Sakellaropoulos, Production of special activated carbon from lignite for environmental purposes, Fuel Process. Technol. 77-78 (2002) 75-87 |
[27] | A. Bagreev, J.A. Menendez, I. Dukhno, Y. Tarasenko, T.J. Bandosz, Oxidative adsorption of methyl mercaptan on nitrogen-enriched bituminous coal-based activated carbon, Carbon 43 (1) (2005) 208-210 |
[28] | E. Okoniewska, J. Lach, M. Kacprzak, E. Neczaj, The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon, Desalination 206 (1-3) (2007) 251-258 |
[29] | R.J.J. Jansen, H. van Bekkum, Amination and ammoxidation of activated carbons, Carbon 32 (8) (1994) 1507-1516 |
[30] | E. Raymundo-Piñero, D. Cazorla-Amorós, A. Linares-Solano, The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres, Carbon 41 (10) (2003) 1925-1932 |
[31] | P. Chingombe, B. Saha, R.J. Wakeman, Sorption of atrazine on conventional and surface modified activated carbons, J Colloid Interface Sci 302 (2) (2006) 408-416 |
[32] | A.M. Starvin, T.P. Rao, Removal and recovery of mercury(II) from hazardous wastes using 1-(2-thiazolylazo)-2-naphthol functionalized activated carbon as solid phase extractant, J Hazard Mater 113 (1-3) (2004) 75-79 |
[33] | Y. Jung, S. Kim, S.J. Park, J.M. Kim, Preparation of functionalized nanoporous carbons for uranium loading, Colloids Surfaces A:Physicochem. Eng. Aspects 313-314 (2008) 292-295 |
[34] | G.D. Vuković, A.D. Marinković, M. Čolić, M.Đ. Ristić, R. Aleksić, A.A. Perić-Grujić, P.S. Uskoković, Removal of cadmium from aqueous solutions by oxidized and ethylenediamine-functionalized multi-walled carbon nanotubes, Chem. Eng. J. 157 (1) (2010) 238-248 |
[35] | M. Choi, J. Jang, Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon, J Colloid Interface Sci 325 (1) (2008) 287-289 |
[36] | J.Z. Zhu, B.L. Deng, J. Yang, D.C. Gang, Modifying activated carbon with hybrid ligands for enhancing aqueous mercury removal, Carbon 47 (8) (2009) 2014-2025 |
[37] | D.F. Zhang, P.L. Huo, W. Liu, Behavior of phenol adsorption on thermal modified activated carbon, Chin. J. Chem. Eng. 24 (4) (2016) 446-452 |
[38] | B. Abussaud, H.A. Asmaly, Ihsanullah, T.A. Saleh, V.K. Gupta, T. Laoui, M.A. Atieh, Sorption of phenol from waters on activated carbon impregnated with iron oxide, aluminum oxide and titanium oxide, J. Mol. Liq. 213 (2016) 351-359 |
[39] | A. Bhatnagar, W. Hogland, M. Marques, M. Sillanpää, An overview of the modification methods of activated carbon for its water treatment applications, Chem. Eng. J. 219 (2013) 499-511 |
[40] | J. Jaramillo, V. Gómez-Serrano, P.M. Alvarez, Enhanced adsorption of metal ions onto functionalized granular activated carbons prepared from cherry stones, J Hazard Mater 161 (2-3) (2009) 670-676 |
[41] | D.B. Mawhinney, J.T. YatesJr, FTIR study of the oxidation of amorphous carbon by ozone at 300 K-Direct COOH formation, Carbon 39 (8) (2001) 1167-1173 |
[42] | P.M. Alvarez, J.F. García-Araya, F.J. Beltrán, F.J. Masa, F. Medina, Ozonation of activated carbons:Effect on the adsorption of selected phenolic compounds from aqueous solutions, J Colloid Interface Sci 283 (2) (2005) 503-512 |
[43] | D. Aggarwal, M. Goyal, R.C. Bansal, Adsorption of chromium by activated carbon from aqueous solution, Carbon 37 (12) (1999) 1989-1997 |
[44] | Y.F. Jia, K.M. Thomas, Adsorption of cadmium ions on oxygen surface sites in activated carbon, Langmuir 16 (3) (2000) 1114-1122 |
[45] | L. Mouni, D. Merabet, A. Bouzaza, L. Belkhiri, Adsorption of Pb(II) from aqueous solutions using activated carbon developed from Apricot stone, Desalination 276 (1-3) (2011) 148-153 |
[46] | V. Strelko Jr, D.J. Malik, Characterization and metal sorptive properties of oxidized active carbon, J Colloid Interface Sci 250 (1) (2002) 213-220 |
[47] | S.X. Liu, X. Chen, X.Y. Chen, Z.F. Liu, H.L. Wang, Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater. 141 (1) (2007) 315-319 |
[48] | P.C. Faria, J.J. Orfão, M.F. Pereira, Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries, Water Res 38 (8) (2004) 2043-2052 |
[49] | K. Jurewicz, K. Babeł, A. Źiółkowski, H. Wachowska, Ammoxidation of active carbons for improvement of supercapacitor characteristics, Electrochimica Acta 48 (11) (2003) 1491-1498 |
[50] | E. Lorenc-Grabowska, G. Gryglewicz, J. Machnikowski, P-Chlorophenol adsorption on activated carbons with basic surface properties, Appl. Surf. Sci. 256 (14) (2010) 4480-4487 |
[51] | F.W. Shaarani, B.H. Hameed, Ammonia-modified activated carbon for the adsorption of 2, 4-dichlorophenol, Chem. Eng. J. 169 (1-3) (2011) 180-185 |
[52] | S.J. Park, Y.S. Jang, Pore structure and surface properties of chemically modified activated carbons for adsorption mechanism and rate of Cr(VI), J Colloid Interface Sci 249 (2) (2002) 458-463 |
[53] | W.F. Chen, F.S. Cannon, J.R. Rangel-Mendez, Ammonia-tailoring of GAC to enhance perchlorate removal. II:Perchlorate adsorption, Carbon 43 (3) (2005) 581-590 |
[54] | C.O. Ania, J.B. Parra, J.A. Menéndez, J.J. Pis, Effect of microwave and conventional regeneration on the microporous and mesoporous network and on the adsorptive capacity of activated carbons, Microporous Mesoporous Mater. 85 (1-2) (2005) 7-15 |
[55] | Q.S. Liu, T. Zheng, N. Li, P. Wang, G. Abulikemu, Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue, Appl. Surf. Sci. 256 (10) (2010) 3309-3315 |
[56] | J.A. Menéndez, E.M. Menéndez, M.J. Iglesias, A. Garcıa, J.J. Pis, Modification of the surface chemistry of active carbons by means of microwave-induced treatments, Carbon 37 (7) (1999) 1115-1121. |
[57] | J.M. Valente Nabais, P.J.M. Carrott, M.M.L. Ribeiro Carrott, J.A. Menéndez, Preparation and modification of activated carbon fibres by microwave heating, Carbon 42 (7) (2004) 1315-1320 |
[58] | J. Rivera-Utrilla, M. Sánchez-Polo, The role of dispersive and electrostatic interactions in the aqueous phase adsorption of naphthalenesulphonic acids on ozone-treated activated carbons, Carbon 40 (14) (2002) 2685-2691 |
[59] | S. Manchester, X.L. Wang, I. Kulaots, Y.M. Gao, R.H. Hurt, High capacity mercury adsorption on freshly ozone-treated carbon surfaces, Carbon N Y 46 (3) (2008) 518-524 |
[60] | J. Jaramillo, P.M. Álvarez, V. Gómez-Serrano, Preparation and ozone-surface modification of activated carbon. Thermal stability of oxygen surface groups, Appl. Surf. Sci. 256 (17) (2010) 5232-5236 |
[61] | D. Lee, S.H. Hong, K.H. Paek, W.T. Ju, Adsorbability enhancement of activated carbon by dielectric barrier discharge plasma treatment, Surf. Coat. Technol. 200 (7) (2005) 2277-2282 |
[62] | S.J. Park, B.J. Kim, Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, J Colloid Interface Sci 275 (2) (2004) 590-595 |
[63] | S. Tanada, N. Kawasaki, T. Nakamura, T. Ohue, I. Abe I, Adsorbability of 1, 1, 1, 2-tetrafluoromethane (HFC134a) onto plasma-treated activated carbon in CF4 and CCl4, J. Colloid Interface Sci. 191 (2) (1997) 337-340 |
[64] | J.P. Boudou, A. Martinez-Alonzo, J.M.D. Tascon, Introduction of acidic groups at the surface of activated carbon by microwave-induced oxygen plasma at low pressure, Carbon 38 (7) (2000) 1021-1029 |
[65] | W. Zhang, H.Y. Liu, Q.B. Xia, Z. Li, Enhancement of dibenzothiophene adsorption on activated carbons by surface modification using low temperature oxygen plasma, Chem. Eng. J. 209 (2012) 597-600 |
[66] | H.Y. Yang, Z.J. Han, S.F. Yu, K.L. Pey, K. Ostrikov, R. Karnik, Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification, Nat Commun 4 (2013) 2220 |
[67] | K.P. Lee, T.C. Arnot, D. de Mattia, A review of reverse osmosis membrane materials for desalination-Development to date and future potential, J. Membr. Sci. 370 (1-2) (2011) 1-22 |
[68] | L.D. Zou, G. Morris, D.D. Qi, Using activated carbon electrode in electrosorptive deionisation of brackish water, Desalination 225 (1-3) (2008) 329-340 |
[69] | A. Aghakhani, S.F. Mousavi, B. Mostafazadeh-Fard, R. Rostamian, M. Seraji, Application of some combined adsorbents to remove salinity parameters from drainage water, Desalination 275 (1-3) (2011) 217-223 |
[70] | T. Wajima, T. Shimizu, T. Yamato, Y. Ikegami, Removal of NaCl from seawater using natural zeolite, Toxicol. Environ. Chem. 92 (1) (2010) 21-26 |
[71] | Z.T. Xue, Z.L. Li, J.H. Ma, X. Bai, Y.H. Kang, W.M. Hao, R.F. Li, Effective removal of Mg2 + and Ca2 + ions by mesoporous LTA zeolite, Desalination 341 (2014) 10-18 |
[72] | X.F. Guo, Z.Y. Ji, J.S. Yuan, Y.Y. Zhao, J. Liu, Recovery of K+ from concentrates from brackish and seawater desalination with modified clinoptilolite, Desalination Water Treat. 57 (15) (2016) 6829-6837 |
[73] | S.B. Wang, Y.L. Peng, Natural zeolites as effective adsorbents in water and wastewater treatment, Chem. Eng. J. 156 (1) (2010) 11-24 |
[74] | S. Cinar, B. Beler-Baykal, Ion exchange with natural zeolites:An alternative for water softening?Water Sci Technol 51 (11) (2005) 71-77 |
[75] | E. Wibowo, Sutisna, M. Rokhmat, R. Murniati, Khairurrijal, M. Abdullah, Utilization of natural zeolite as sorbent material for seawater desalination, Procedia Eng. 170 (2017) 8-13 |
[76] | C. Díaz-Nava, M.T. Olguín, M. Solache-Ríos, Water defluoridation by Mexican heulandite-clinoptilolite, Sep. Sci. Technol. 37 (13) (2002) 3109-3128 |
[77] | S. Samatya, Ü. Yüksel, M. Yüksel, N. Kabay, Removal of fluoride from water by metal ions (Al3+, La3+ and ZrO2+) loaded natural zeolite, Sep. Sci. Technol. 42 (9) (2007) 2033-2047 |
[78] | Haggerty GM, Bowman RS, Sorption of chromate and other inorganic anions by organo-zeolite, Environ Sci Technol 28 (3) (1994) 452-458 |
[79] | M. Ghiaci, R. Kia, A. Abbaspur, F. Seyedeyn-Azad, Adsorption of chromate by surfactant-modified zeolites and MCM-41 molecular sieve, Sep. Purif. Technol. 40 (3) (2004) 285-295 |
[80] | B. Armaǧan, O. Özdemir, M. Turan, M.S. Çelik, The removal of reactive azo dyes by natural and modified zeolites, J. Chem. Technol. Biotechnol. 78 (7) (2003) 725-732 |
[81] | S.B. Wang, Z.H. Zhu, Characterisation and environmental application of an Australian natural zeolite for basic dye removal from aqueous solution, J Hazard Mater 136 (3) (2006) 946-952 |
[82] | S.B. Wang, E. Ariyanto, Competitive adsorption of malachite green and Pb ions on natural zeolite, J Colloid Interface Sci 314 (1) (2007) 25-31 |
[83] | D. Karadag, M. Turan, E. Akgul, S. Tok, A. Faki, Adsorption Equilibrium and Kinetics of Reactive Black 5 and Reactive Red 239 in Aqueous Solution onto Surfactant-Modified Zeolite, Journal of Chemical & Engineering Data, 52 (2007) 1615-1620 |
[84] | S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (6348) (1991) 56-58 |
[85] | P. Oleszczuk, B. Pan, B.S. Xing, Adsorption and desorption of oxytetracycline and carbamazepine by multiwalled carbon nanotubes, Environ Sci Technol 43 (24) (2009) 9167-9173 |
[86] | B. Pan, D.H. Lin, H. Mashayekhi, B.S. Xing, Adsorption and hysteresis of bisphenol A and 17alpha-ethinyl estradiol on carbon nanomaterials, Environ Sci Technol 42 (15) (2008) 5480-5485 |
[87] | A. Avcı, İ. İnci, N. Baylan, Adsorption of ciprofloxacin hydrochloride on multiwall carbon nanotube, J. Mol. Struct. 1206 (2020) 127711 |
[88] | C. Parlak, Ö. Alver, Adsorption of ibuprofen on silicon decorated fullerenes and single walled carbon nanotubes:A comparative DFT study, J. Mol. Struct. 1184 (2019) 110-113 |
[89] | Z.C. Li, L. Sellaoui, D. Franco, M.S. Netto, J. Georgin, G.L. Dotto, A. Bajahzar, H. Belmabrouk, A. Bonilla-Petriciolet, Q. Li, Adsorption of hazardous dyes on functionalized multiwalled carbon nanotubes in single and binary systems:Experimental study and physicochemical interpretation of the adsorption mechanism, Chem. Eng. J. 389 (2020) 124467 |
[90] | X.M. Ren, C.L. Chen, M. Nagatsu, X.K. Wang, Carbon nanotubes as adsorbents in environmental pollution management:A review, Chem. Eng. J. 170 (2-3) (2011) 395-410 |
[91] | A. Stafiej, K. Pyrzynska, Adsorption of heavy metal ions with carbon nanotubes, Sep. Purif. Technol. 58 (1) (2007) 49-52 |
[92] | Y.H. Li, S.G. Wang, Z.K. Luan, J. Ding, C.L. Xu, D.H. Wu, Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes, Carbon 41 (5) (2003) 1057-1062 |
[93] | J.W. Shim, S.J. Park, S.K. Ryu, Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers, Carbon 39 (11) (2001) 1635-1642 |
[94] | Y.H. Li, S.G. Wang, J.Q. Wei, X.F. Zhang, C.L. Xu, Z.K. Luan, D.H. Wu, B.Q. Wei, Lead adsorption on carbon nanotubes, Chem. Phys. Lett. 357 (3-4) (2002) 263-266 |
[95] | M. Ahmadzadeh Tofighy, T. Mohammadi, Application of Taguchi experimental design in optimization of desalination using purified carbon nanotubes as adsorbent, Mater. Res. Bull. 47 (9) (2012) 2389-2395 |
[96] | S.S. Fiyadh, M.A. AlSaadi, W.Z. Jaafar, M.K. AlOmar, S.S. Fayaed, N.S. Mohd, L.S. Hin, A. El-Shafie, Review on heavy metal adsorption processes by carbon nanotubes, J. Clean. Prod. 230 (2019) 783-793 |
[97] | G.P. Rao, C. Lu, F.S. Su, Sorption of divalent metal ions from aqueous solution by carbon nanotubes:A review, Sep. Purif. Technol. 58 (1) (2007) 224-231 |
[98] | V.K. Upadhyayula, S.G. Deng, M.C. Mitchell, G.B. Smith, Application of carbon nanotube technology for removal of contaminants in drinking water:A review, Sci Total Environ 408 (1) (2009) 1-13 |
[99] | M. Pacurari, V. Castranova, V. Vallyathan, Single- and multi-wall carbon nanotubes versus asbestos:Are the carbon nanotubes a new health risk to humans?J Toxicol Environ Health A 73 (5) (2010) 378-395 |
[100] | H.B. Li, L.K. Pan, Y.P. Zhang, L.D. Zou, C.Q. Sun, Y.K. Zhan, Z. Sun, Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes, Chem. Phys. Lett. 485 (1-3) (2010) 161-166 |
[101] | M.A. Tofighy, T. Mohammadi, Salty water desalination using carbon nanotube sheets, Desalination 258 (1-3) (2010) 182-186 |
[102] | M.A. Tofighy, T. Mohammadi, Permanent hard water softening using carbon nanotube sheets, Desalination 268 (1-3) (2011) 208-213 |
[103] | M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4 (6) (2011) 1946 |
[104] | G.X. Zhao, J.X. Li, X.M. Ren, C.L. Chen, X.K. Wang, Few-layered graphene oxide nanosheets as superior sorbents for heavy metal ion pollution management, Environ Sci Technol 45 (24) (2011) 10454-10462 |
[105] | S.P. Surwade, S.N. Smirnov, I.V. Vlassiouk, R.R. Unocic, G.M. Veith, S. Dai, S.M. Mahurin, Corrigendum:Water desalination using nanoporous single-layer graphene, Nat Nanotechnol 11 (11) (2016) 995 |
[106] | F. Perreault, A. Fonseca de Faria, M. Elimelech, Environmental applications of graphene-based nanomaterials, Chem Soc Rev 44 (16) (2015) 5861-5896 |
[107] | M. Machida, T. de Mochimaru, H. Tatsumoto, Lead(II) adsorption onto the graphene layer of carbonaceous materials in aqueous solution, Carbon 44 (13) (2006) 2681-2688 |
[108] | H. Wang, X.Z. Yuan, Y. Wu, H.J. Huang, G.M. Zeng, Y. Liu, X.L. Wang, N.B. Lin, Y. Qi, Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution, Appl. Surf. Sci. 279 (2013) 432-440 |
[109] | A.K. Mishra, S. Ramaprabhu, Functionalized graphene sheets for arsenic removal and desalination of sea water, Desalination 282 (2011) 39-45 |
[110] | Z.H. Huang, X.Y. Zheng, W. Lv, M. Wang, Q.H. Yang, F.Y. Kang, Adsorption of lead(II) ions from aqueous solution on low-temperature exfoliated graphene nanosheets, Langmuir 27 (12) (2011) 7558-7562 |
[111] | Y.F. Yang, Y.L. Xie, L.C. Pang, M. Li, X.H. Song, J.G. Wen, H.Y. Zhao, Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue, Langmuir 29 (34) (2013) 10727-10736 |
[112] | C.J. Madadrang, H.Y. Kim, G.H. Gao, N. Wang, J. Zhu, H. Feng, M. Gorring, M.L. Kasner, S.F. Hou, Adsorption behavior of EDTA-graphene oxide for Pb (II) removal, ACS Appl Mater Interfaces 4 (3) (2012) 1186-1193 |
[113] | L. Liu, C. Li, C.L. Bao, Q. Jia, P.F. Xiao, X.T. Liu, Q.P. Zhang, Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II), Talanta 93 (2012) 350-357 |
[114] | V. Chandra, J. Park, Y. Chun, J.W. Lee, I.C. Hwang, K.S. Kim, Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal, ACS Nano 4 (7) (2010) 3979-3986 |
[115] | J. Ma, Y.R. Sun, M.Z. Zhang, M.X. Yang, X. Gong, F. Yu, J. Zheng, Comparative study of graphene hydrogels and aerogels reveals the important role of buried water in pollutant adsorption, Environ Sci Technol 51 (21) (2017) 12283-12292 |
[116] | L. Wang, L. Jiang, D. Su, C. Sun, M.F. Chen, K. Goh, Y. Chen, Non-covalent synthesis of thermo-responsive graphene oxide-perylene bisimides-containing poly(N-isopropylacrylamide) hybrid for organic pigment removal, J Colloid Interface Sci 430 (2014) 121-128 |
[117] | Z.H. Chen, Z. Liu, J.Q. Hu, Q.W. Cai, X.Y. Li, W. Wang, Y. Faraj, X.J. Ju, R. Xie, L.Y. Chu, Β-Cyclodextrin-modified graphene oxide membranes with large adsorption capacity and high flux for efficient removal of bisphenol A from water, J. Membr. Sci. 595 (2020) 117510 |
[118] | Y.J. Yao, Z.H. Yang, D.W. Zhang, W.C. Peng, H.Q. Sun, S.B. Wang, Magnetic CoFe2O4-graphene hybrids:Facile synthesis, characterization, and catalytic properties, Ind. Eng. Chem. Res. 51 (17) (2012) 6044-6051 |
[119] | H. Jabeen, V. Chandra, S. Jung, J.W. Lee, K.S. Kim, S.B. Kim, Enhanced Cr(vi) removal using iron nanoparticle decorated graphene, Nanoscale 3 (9) (2011) 3583-3585 |
[120] | M.C. Liu, C.L. Chen, J. Hu, X.L. Wu, X.K. Wang, Synthesis of magnetite/graphene oxide composite and application for cobalt(II) removal, J. Phys. Chem. C 115 (51) (2011) 25234-25240 |
[121] | Li J, Zhang S, Chen C, Zhao G, Yang X, Li J, Wang X, Removal of Cu(II) and fulvic acid by graphene oxide nanosheets decorated with Fe3O4 nanoparticles, ACS Appl Mater Interfaces 4 (9) (2012) 4991-5000 |
[122] | J.H. Zhu, S.Y. Wei, H.B. Gu, S.B. Rapole, Q. Wang, Z.P. Luo, N. Haldolaarachchige, D.P. Young, Z.H. Guo, One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal, Environ Sci Technol 46 (2) (2012) 977-985 |
[123] | G. Gollavelli, C.C. Chang, Y.C. Ling, Facile synthesis of smart magnetic graphene for safe drinking water:Heavy metal removal and disinfection control, ACS Sustainable Chem. Eng. 1 (5) (2013) 462-472 |
[124] | W.Q. Kong, X.D. Duan, Y.J. Ge, H.T. Liu, J.W. Hu, X.F. Duan, Holey graphene hydrogel with in-plane pores for high-performance capacitive desalination, Nano Res. 9 (8) (2016) 2458-2466 |
[125] | J. Ma, L. Wang, F. Yu, Water-enhanced performance in capacitive deionization for desalination based on graphene gel as electrode material, Electrochimica Acta 263 (2018) 40-46 |
[126] | B.P. Jia, L.D. Zou, Graphene nanosheets reduced by a multi-step process as high-performance electrode material for capacitive deionisation, Carbon 50 (6) (2012) 2315-2321 |
[127] | Z. Wang, B.J. Dou, L. Zheng, G.N. Zhang, Z.H. Liu, Z.P. Hao, Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material, Desalination 299 (2012) 96-102 |
[128] | A.G. El-Deen, N.A.M. Barakat, H.Y. Kim, Graphene wrapped MnO2-nanostructures as effective and stable electrode materials for capacitive deionization desalination technology, Desalination 344 (2014) 289-298 |
[129] | D.S. Zhang, X.R. Wen, L.Y. Shi, T.T. Yan, J.P. Zhang, Enhanced capacitive deionization of graphene/mesoporous carbon composites, Nanoscale 4 (17) (2012) 5440-5446 |
[130] | D.S. Zhang, T.T. Yan, L.Y. Shi, Z. Peng, X.R. Wen, J.P. Zhang, Enhanced capacitive deionization performance of graphene/carbon nanotube composites, J. Mater. Chem. 22 (29) (2012) 14696 |
[131] | A. Yousef, R.M. Abdel Hameed, S.F. Shaikh, A. Abutaleb, M.M. El-Halwany, A.M. Al-Enizi, Enhanced electro-adsorption desalination performance of graphene by TiC, Sep. Purif. Technol. 254 (2021) 117602 |
[132] | G.M.D. Costa, C.M. Hussain, Ethical, legal, social and economics issues of graphene. Analytical Applications of Graphene for Comprehensive Analytical Chemistry. Amsterdam:Elsevier, (2020) 263-279 |
[133] | C.Y. Li, Z.C. Zhuang, X.Y. Jin, Z.L. Chen, A facile and green preparation of reduced graphene oxide using Eucalyptus leaf extract, Appl. Surf. Sci. 422 (2017) 469-474 |
[134] | M. Sun, J.H. Li, Graphene oxide membranes:Functional structures, preparation and environmental applications, Nano Today 20 (2018) 121-137 |
[135] | S. Manchala, V.S.R.K. Tandava, D. Jampaiah, S.K. Bhargava, V. Shanker, Novel and highly efficient strategy for the green synthesis of soluble graphene by aqueous polyphenol extracts of eucalyptus bark and its applications in high-performance supercapacitors, ACS Sustainable Chem. Eng. 7 (13) (2019) 11612-11620 |
[136] | X.X. Li, H.Y. Xu, F.Z. Kong, R.H. Wang, A cationic metal-organic framework consisting of nanoscale cages:Capture, separation, and luminescent probing of Cr(2)O7(2-) through a single-crystal to single-crystal process, Angew Chem Int Ed Engl 52 (51) (2013) 13769-13773 |
[137] | J.R. Li, J. Sculley, H.C. Zhou, Metal-organic frameworks for separations, Chem Rev 112 (2) (2012) 869-932 |
[138] | J.R. Li, R.J. Kuppler, H.C. Zhou, Selective gas adsorption and separation in metal-organic frameworks, Chem Soc Rev 38 (5) (2009) 1477-1504 |
[139] | J. Lu, H.C. Zhang, J. Hou, X.Y. Li, X.Y. Hu, Y.X. Hu, C.D. Easton, Q.Y. Li, C.H. Sun, A.W. Thornton, M.R. Hill, X.W. Zhang, G.P. Jiang, J.Z. Liu, A.J. Hill, B.D. Freeman, L. Jiang, H.T. Wang, Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks, Nat Mater 19 (7) (2020) 767-774 |
[140] | J.J. Duan, S. Chen, C. Zhao, Ultrathin metal-organic framework array for efficient electrocatalytic water splitting, Nat Commun 8 (2017) 15341 |
[141] | J.S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y.J. Jeon, K. Kim, A homochiral metal-organic porous material for enantioselective separation and catalysis, Nature 404 (6781) (2000) 982-986 |
[142] | J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chemical Society reviews, 38 (2009) 1450-1459 |
[143] | N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O'Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks, Science 300 (5622) (2003) 1127-1129 |
[144] | L.J. Murray, M. Dincă, J.R. Long, Hydrogen storage in metal-organic frameworks, Chem Soc Rev 38 (5) (2009) 1294-1314 |
[145] | S.C. Xiang, Z.J. Zhang, C.G. Zhao, K.L. Hong, X.B. Zhao, D.R. Ding, M.H. Xie, C.D. Wu, M.C. Das, R. Gill, K.M. Thomas, B.L. Chen, Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene, Nat Commun 2 (2011) 204 |
[146] | W. Zhang, X.F. Jiang, Y.Y. Zhao, A. Carné-Sánchez, V. Malgras, J. Kim, J.H. Kim, S.B. Wang, J. Liu, J.S. Jiang, Y. Yamauchi, M. Hu, Hollow carbon nanobubbles:Monocrystalline MOF nanobubbles and their pyrolysis, Chem Sci 8 (5) (2017) 3538-3546 |
[147] | W. Chaikittisilp, N.L. Torad, C.L. Li, M. Imura, N. Suzuki, S. Ishihara, K. Ariga, Y. Yamauchi, Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks, Chemistry 20 (15) (2014) 4217-4221 |
[148] | R.R. Salunkhe, C. Young, J. Tang, T. Takei, Y. Ide, N. Kobayashi, Y. Yamauchi, A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte, Chem Commun (Camb) 52 (26) (2016) 4764-4767 |
[149] | H.H. Fei, D.L. Rogow, S.R. Oliver, Reversible anion exchange and catalytic properties of two cationic metal-organic frameworks based on Cu(I) and Ag(I), J Am Chem Soc 132 (20) (2010) 7202-7209 |
[150] | H.H. Fei, M.R. Bresler, S.R. Oliver, A new paradigm for anion trapping in high capacity and selectivity:Crystal-to-crystal transformation of cationic materials, J Am Chem Soc 133 (29) (2011) 11110-11113 |
[151] | H.H. Fei, C.S. Han, J.C. Robins, S.R.J. Oliver, A cationic metal-organic solid solution based on Co(II) and Zn(II) for chromate trapping, Chem. Mater. 25 (5) (2013) 647-652 |
[152] | P.F. Shi, B. Zhao, G. Xiong, Y.L. Hou, P. Cheng, Fast capture and separation of, and luminescent probe for, pollutant chromate using a multi-functional cationic heterometal-organic framework, Chem Commun (Camb) 48 (66) (2012) 8231-8233 |
[153] | X.D. Zhao, D.H. Liu, H.L. Huang, W.J. Zhang, Q.Y. Yang, C.L. Zhong, The stability and defluoridation performance of MOFs in fluoride solutions, Microporous Mesoporous Mater. 185 (2014) 72-78 |
[154] | C.H. Wang, X.L. Liu, J.P. Chen, K. Li, Superior removal of arsenic from water with zirconium metal-organic framework UiO-66, Sci Rep 5 (2015) 16613 |
[155] | A.J. Howarth, M.J. Katz, T.C. Wang, A.E. Platero-Prats, K.W. Chapman, J.T. Hupp, O.K. Farha, High efficiency adsorption and removal of selenate and selenite from water using metal-organic frameworks, J Am Chem Soc 137 (23) (2015) 7488-7494 |
[156] | X. Zhao, X.H. Bu, T. Wu, S.T. Zheng, L. Wang, P.Y. Feng, Selective anion exchange with nanogated isoreticular positive metal-organic frameworks, Nat Commun 4 (2013) 2344 |
[157] | Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM, The chemistry and applications of metal-organic frameworks, Science 341 (6149) (2013) 1230444 |
[158] | Z. Wang, T. Yan, G. Chen, L. Shi, D. Zhang, High Salt Removal Capacity of Metal-Organic Gel Derived Porous Carbon for Capacitive Deionization, ACS Sustainable Chemistry & Engineering, 5 (2017) 11637-11644 |
[159] | B. Liu, H. Shioyama, T. Akita, Q. Xu, Metal-organic framework as a template for porous carbon synthesis, J Am Chem Soc 130 (16) (2008) 5390-5391 |
[160] | A. Aijaz, J.K. Sun, P. Pachfule, T. Uchida, Q. Xu, From a metal-organic framework to hierarchical high surface-area hollow octahedral carbon cages, Chem Commun (Camb) 51 (73) (2015) 13945-13948 |
[161] | H.L. Jiang, B. Liu, Y.Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F.Q. Zong, Q. Xu, From metal-organic framework to nanoporous carbon:Toward a very high surface area and hydrogen uptake, J Am Chem Soc 133 (31) (2011) 11854-11857 |
[162] | J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J Am Chem Soc 130 (42) (2008) 13850-13851 |
[163] | K.K. Yee, N. Reimer, J. Liu, S.Y. Cheng, S.M. Yiu, J. Weber, N. Stock, Z.T. Xu, Effective mercury sorption by thiol-laced metal-organic frameworks:In strong acid and the vapor phase, J Am Chem Soc 135 (21) (2013) 7795-7798 |
[164] | M. Kandiah, M.H. Nilsen, S. Usseglio, S. Jakobsen, U. Olsbye, M. Tilset, C. Larabi, E.A. Quadrelli, F. Bonino, K.P. Lillerud, Synthesis and stability of tagged UiO-66 Zr-MOFs, Chem. Mater. 22 (24) (2010) 6632-6640 |
[165] | G.C. Shearer, S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, K.P. Lillerud, Defect engineering:Tuning the porosity and composition of the metal-organic framework UiO-66 via modulated synthesis, Chem. Mater. 28 (11) (2016) 3749-3761 |
[166] | M.G. Goesten, J. Juan-Alcañiz, E.V. Ramos-Fernandez, K.B. Sai Sankar Gupta, E. Stavitski, H. van Bekkum, J. Gascon, F. Kapteijn, Sulfation of metal-organic frameworks:Opportunities for acid catalysis and proton conductivity, J. Catal. 281 (1) (2011) 177-187. |
[167] | R. Li, X.Q. Ren, J.S. Zhao, X. Feng, X. Jiang, X.X. Fan, Z.G. Lin, X.G. Li, C.W. Hu, B. Wang, Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules, J. Mater. Chem. A 2 (7) (2014) 2168-2173 |
[168] | Gao L, Li CY, Chan KY, Chen ZN, Metal-organic framework threaded with aminated polymer formed in situ for fast and reversible ion exchange, J Am Chem Soc 136 (20) (2014) 7209-7212 |
[169] | L. Gao, C.Y.V. Li, K.Y. Chan, Polystyrenesulfonate threaded in MIL-101Cr(III):A cationic polyelectrolyte synthesized directly into a metal-organic framework, Chem. Mater. 27 (10) (2015) 3601-3608 |
[170] | J.M. Shen, Y. Li, C.H. Wang, R. Luo, J.S. Li, X.Y. Sun, J.Y. Shen, W.Q. Han, L.J. Wang, Hollow ZIFs-derived nanoporous carbon for efficient capacitive deionization, Electrochimica Acta 273 (2018) 34-42 |
[171] | Z. Wang, T.T. Yan, L.Y. Shi, D.S. Zhang, In situ expanding pores of dodecahedron-like carbon frameworks derived from MOFs for enhanced capacitive deionization, ACS Appl Mater Interfaces 9 (17) (2017) 15068-15078 |
[172] | J. Zhang, J.H. Fang, J.L. Han, T.T. Yan, L.Y. Shi, D.S. Zhang, N, P, S co-doped hollow carbon polyhedra derived from MOF-based core-shell nanocomposites for capacitive deionization, J. Mater. Chem. A 6 (31) (2018) 15245-15252 |
[173] | Q.R. Fang, D.Q. Yuan, J. Sculley, J.R. Li, Z.B. Han, H.C. Zhou, Functional mesoporous metal-organic frameworks for the capture of heavy metal ions and size-selective catalysis, Inorg Chem 49 (24) (2010) 11637-11642 |
[174] | J. Li, Y. Liu, X.X. Wang, G.X. Zhao, Y.J. Ai, B. Han, T. Wen, T. Hayat, A. Alsaedi, X.K. Wang, Experimental and theoretical study on selenate uptake to zirconium metal-organic frameworks:Effect of defects and ligands, Chem. Eng. J. 330 (2017) 1012-1021 |
[175] | C.O. Audu, H.G.T. Nguyen, C.Y. Chang, M.J. Katz, L. Mao, O.K. Farha, J.T. Hupp, S.T. Nguyen, The dual capture of AsV and AsIII by UiO-66 and analogues, Chem Sci 7 (10) (2016) 6492-6498 |
[176] | B. Li, X.Y. Zhu, K.L. Hu, Y.S. Li, J.F. Feng, J.L. Shi, J.L. Gu, Defect creation in metal-organic frameworks for rapid and controllable decontamination of roxarsone from aqueous solution, J Hazard Mater 302 (2016) 57-64 |
[177] | P. Ghosh, Y.J. Colón, R.Q. Snurr, Water adsorption in UiO-66:The importance of defects, Chem Commun (Camb) 50 (77) (2014) 11329-11331 |
[178] | L. Gao, K.Y. Chan, C.V. Li, L.X. Xie, J.F. Olorunyomi, Highly selective transport of alkali metal ions by nanochannels of polyelectrolyte threaded MIL-53 metal organic framework, Nano Lett 19 (8) (2019) 4990-4996 |
[179] | G. Akiyama, R. Matsuda, H. Sato, M. Takata, S. Kitagawa, Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups, Adv Mater 23 (29) (2011) 3294-3297 |
[180] | X.Y. He, X.B. Min, X.B. Luo, Efficient removal of antimony (III, V) from contaminated water by amino modification of a zirconium metal-organic framework with mechanism study, J. Chem. Eng. Data 62 (4) (2017) 1519-1529 |
[181] | X.B. Luo, L. Ding, J.M. Luo, Adsorptive removal of Pb(II) ions from aqueous samples with amino-functionalization of metal-organic frameworks MIL-101(Cr), J. Chem. Eng. Data 60 (6) (2015) 1732-1743 |
[182] | X.B. Luo, T.T. Shen, L. Ding, W.P. Zhong, J.F. Luo, S.L. Luo, Novel thymine-functionalized MIL-101 prepared by post-synthesis and enhanced removal of Hg2+ from water, J Hazard Mater 306 (2016) 313-322 |
[183] | J. Li, X.D. Li, T. Hayat, A. Alsaedi, C.L. Chen, Screening of zirconium-based metal-organic frameworks for efficient simultaneous removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution, ACS Sustain. Chem. Eng. 5 (12) (2017) 11496-11503 |
[184] | M. Carboni, C.W. Abney, S.B. Liu, W.B. Lin, Highly porous and stable metal-organic frameworks for uranium extraction, Chem. Sci. 4 (6) (2013) 2396 |
[185] | V.G. Ponomareva, K.A. Kovalenko, A.P. Chupakhin, D.N. Dybtsev, E.S. Shutova, V.P. Fedin, Imparting high proton conductivity to a metal-organic framework material by controlled acid impregnation, J Am Chem Soc 134 (38) (2012) 15640-15643 |
[186] | S.J. Lee, T. Hann, S.H. Park, Seawater desalination using MOF-incorporated Cu-based alginate beads without energy consumption, ACS Appl Mater Interfaces 12 (14) (2020) 16319-16326 |
[187] | T. Uemura, D. Hiramatsu, Y. Kubota, M. Takata, S. Kitagawa, Topotactic linear radical polymerization of divinylbenzenes in porous coordination polymers, Angew Chem Int Ed Engl 46 (26) (2007) 4987-4990 |
[188] | G. Distefano, A. Comotti, S. Bracco, M. Beretta, P. Sozzani, Porous dipeptide crystals as polymerization nanoreactors, Angew Chem Int Ed Engl 51 (37) (2012) 9258-9262 |
[189] | Uemura T, Horike S, Kitagawa K, Mizuno M, Endo K, Bracco S, Comotti A, Sozzani P, Nagaoka M, Kitagawa S, Conformation and molecular dynamics of single polystyrene chain confined in coordination nanospace, J Am Chem Soc 130 (21) (2008) 6781-6788 |
[190] | Distefano G, Suzuki H, Tsujimoto M, Isoda S, Bracco S, Comotti A, Sozzani P, Uemura T, Kitagawa S, Highly ordered alignment of a vinyl polymer by host-guest cross-polymerization, Nat Chem 5 (4) (2013) 335-341 |
[191] | Uemura T, Yanai N, Watanabe S, Tanaka H, Numaguchi R, Miyahara MT, Ohta Y, Nagaoka M, Kitagawa S, Unveiling thermal transitions of polymers in subnanometre pores, Nat Commun 1 (2010) 83 |
[192] | N. Yanai, T. Uemura, S. Kitagawa, Behavior of binary guests in a porous coordination polymer, Chem. Mater. 24 (24) (2012) 4744-4749 |
[193] | J.F. Olorunyomi, K.Y. Chan, L. Gao, A.A. Voskanyan, C.Y.V. Li, Direct synthesis of anion exchange polymer threaded in a metal-organic framework through in situ polymerization of an ionic liquid, Microporous Mesoporous Mater. 259 (2018) 255-263 |
[194] | J. Kim, J. Kim, J.H. Kim, H.S. Park, Hierarchically open-porous nitrogen-incorporated carbon polyhedrons derived from metal-organic frameworks for improved CDI performance, Chem. Eng. J. 382 (2020) 122996 |
[195] | B.Q. Cen, K.X. Li, C. Lv, R. Yang, A novel asymmetric activated carbon electrode doped with metal-organic frameworks for high desalination performance, J. Solid State Electrochem. 24 (3) (2020) 687-697 |
[196] | R.R. Salunkhe, Y.V. Kaneti, J. Kim, J.H. Kim, Y. Yamauchi, Nanoarchitectures for metal-organic framework-derived nanoporous carbons toward supercapacitor applications, Acc Chem Res 49 (12) (2016) 2796-2806 |
[197] | B. Han, G. Cheng, E.Y. Zhang, L.J. Zhang, X.K. Wang, Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors, Electrochimica Acta 263 (2018) 391-399 |
[198] | L.M. Chang, J.R. Li, X.Y. Duan, W. Liu, Porous carbon derived from Metal-organic framework (MOF) for capacitive deionization electrode, Electrochimica Acta 176 (2015) 956-964 |
[199] | Y. Liu, X.T. Xu, M. Wang, T. Lu, Z. Sun, L.K. Pan, Metal-organic framework-derived porous carbon polyhedra for highly efficient capacitive deionization, Chem. Commun. 51 (60) (2015) 12020-12023 |
[200] | M. Wang, X.T. Xu, Y. Liu, Y.J. Li, T. Lu, L.K. Pan, From metal-organic frameworks to porous carbons:A promising strategy to prepare high-performance electrode materials for capacitive deionization, Carbon 108 (2016) 433-439 |
[201] | Z. Wang, T.T. Yan, J.H. Fang, L.Y. Shi, D.S. Zhang, Nitrogen-doped porous carbon derived from a bimetallic metal-organic framework as highly efficient electrodes for flow-through deionization capacitors, J. Mater. Chem. A 4 (28) (2016) 10858-10868 |
[202] | W.H. Shi, C.Z. Ye, X.L. Xu, X.Y. Liu, M. Ding, W.X. Liu, X.H. Cao, J.N. Shen, H.Y. Yang, C.J. Gao, High-performance membrane capacitive deionization based on metal-organic framework-derived hierarchical carbon structures, ACS Omega 3 (8) (2018) 8506-8513 |
[203] | R.W. Ou, H.C. Zhang, J. Wei, S. Kim, L. Wan, N.S. Nguyen, Y.X. Hu, X.W. Zhang, G.P. Simon, H.T. Wang, Thermoresponsive amphoteric metal-organic frameworks for efficient and reversible adsorption of multiple salts from water, Adv Mater (2018) e1802767. DOI:10.1002/adma.201802767 |
[204] | S.S. Nagarkar, A.V. Desai, S.K. Ghosh, Stimulus-responsive metal-organic frameworks, Chem Asian J 9 (9) (2014) 2358-2376 |
[205] | Yanai N, Uemura T, Inoue M, Matsuda R, Fukushima T, Tsujimoto M, Isoda S, Kitagawa S, Guest-to-host transmission of structural changes for stimuli-responsive adsorption property, J Am Chem Soc 134 (10) (2012) 4501-4504 |
[206] | Park J, Yuan D, Pham KT, Li JR, Yakovenko A, Zhou HC, Zhou HC, Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal-organic framework, J Am Chem Soc 134 (1) (2012) 99-102 |
[207] | J.W. Brown, B.L. Henderson, M.D. Kiesz, A.C. Whalley, W. Morris, S. Grunder, H.X. Deng, H. Furukawa, J.I. Zink, J.F. Stoddart, O.M. Yaghi, Photophysical pore control in an azobenzene-containing metal-organic framework, Chem. Sci. 4 (7) (2013) 2858 |
[208] | Tan LL, Song N, Zhang SX, Li H, Wang B, Yang YW, Ca2+, pH and thermo triple-responsive mechanized Zr-based MOFs for on-command drug release in bone diseases, J Mater Chem B 4 (1) (2016) 135-140 |
[209] | L.L. Tan, H.W. Li, Y. Zhou, Y.Y. Zhang, X. Feng, B. Wang, Y.W. Yang, Zn(2+)-triggered drug release from biocompatible zirconium MOFs equipped with supramolecular gates, Small 11 (31) (2015) 3807-3813 |
[210] | X.S. Meng, B. Gui, D.Q. Yuan, M. Zeller, C. Wang, Mechanized azobenzene-functionalized zirconium metal-organic framework for on-command cargo release, Sci Adv 2 (8) (2016) e1600480. DOI:10.1126/sciadv.1600480 |
[211] | N.P.G.N. Chandrasekara, R.M. Pashley, Study of a new process for the efficient regeneration of ion exchange resins, Desalination 357 (2015) 131-139 |
[212] | B.A. Bolto, K. Eppinger, A.S. MacPherson, R. Siudak, D.E. Weiss, D. Willis, An ion exchange process with thermal regeneration IX. A new type of rapidly reacting ion-exchange resin, Desalination 13 (3) (1973) 269-285 |
[213] | R.E. Blankenship, D.M. Tiede, J. Barber, G.W. Brudvig, G. Fleming, M. Ghirardi, M.R. Gunner, W. Junge, D.M. Kramer, A. Melis, T.A. Moore, C.C. Moser, D.G. Nocera, A.J. Nozik, D.R. Ort, W.W. Parson, R.C. Prince, R.T. Sayre, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement, Science 332 (6031) (2011) 805-809 |
[214] | R.W. Ou, H.C. Zhang, V.X. Truong, L. Zhang, H.M. Hegab, L. Han, J. Hou, X.W. Zhang, A. Deletic, L. Jiang, G.P. Simon, H.T. Wang, A sunlight-responsive metal-organic framework system for sustainable water desalination, Nat. Sustain. 3 (12) (2020) 1052-1058 |
[215] | S. Goto, N. Sato, H. Teshima, Periodic operation for desalting water with thermally regenerable ion-exchange resin, Sep. Sci. Technol. 14 (3) (1979) 209-217 |
[216] | R. Kunin, F.X. McGarvey, Monobed deionization with ion exchange resins, Ind. Eng. Chem. 43 (3) (1951) 734-740 |
[217] | M. Chanda, S.A. Pillay, A. Sarkar, J.M. Modak, A thermally regenerable composite sorbent of crosslinked poly(acrylic acid) and ethoxylated polyethyleneimine for water desalination by Sirotherm process, J. Appl. Polym. Sci. 111 (6) (2009) 2741-2750 |
[218] | B.A. Bolto, K.H. Eppinger, M.B. Jackson, R.V. Siudak, An ion-exchange process with thermal regeneration XIV thermally regenerable resin systems with high capacities, Desalination 34 (3) (1980) 171-188 |
[219] | Z. Xia, Y. Zhao, S.B. Darling, Covalent Organic Frameworks for Water Treatment, Advanced Materials Interfaces, 8 (2021) 2001507 |
[220] | S.B. Yu, H. Lyu, J. Tian, H. Wang, D.W. Zhang, Y. Liu, Z.T. Li, A polycationic covalent organic framework:A robust adsorbent for anionic dye pollutants, Polym. Chem. 7 (20) (2016) 3392-3397 |
[221] | M. Firoozi, Z. Rafiee, K. Dashtian, New MOF/COF hybrid as a robust adsorbent for simultaneous removal of auramine O and rhodamine B dyes, ACS Omega 5 (16) (2020) 9420-9428 |
[222] | J. Li, X.D. Yang, C.Y. Bai, Y. Tian, B. Li, S. Zhang, X.Y. Yang, S.D. Ding, C.Q. Xia, X.Y. Tan, L.J. Ma, S.J. Li, A novel benzimidazole-functionalized 2-D COF material:Synthesis and application as a selective solid-phase extractant for separation of uranium, J Colloid Interface Sci 437 (2015) 211-218 |
[223] | Q. Sun, B. Aguila, L.D. Earl, C.W. Abney, L. Wojtas, P.K. Thallapally, S.Q. Ma, Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration, Adv Mater 30 (20) (2018) e1705479. DOI:10.1002/adma.201705479 |
[224] | Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W, Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II), J Am Chem Soc 138 (9) (2016) 3031-3037 |
[225] | N. Huang, L.P. Zhai, H. Xu, D.L. Jiang, Stable covalent organic frameworks for exceptional mercury removal from aqueous solutions, J Am Chem Soc 139 (6) (2017) 2428-2434 |
[226] | Sun Q, Aguila B, Perman J, Earl LD, Abney CW, Cheng Y, Wei H, Nguyen N, Wojtas L, Ma S, Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal, J Am Chem Soc 139 (7) (2017) 2786-2793 |
[227] | L. Merí-Bofí, S. Royuela, F. Zamora, M.L. Ruiz-González, J.L. Segura, R. Muñoz-Olivas, M.J. Mancheño, Thiol grafted imine-based covalent organic frameworks for water remediation through selective removal of Hg(ii), J. Mater. Chem. A 5 (34) (2017) 17973-17981 |
[228] | Y.Z. Jiang, C.Y. Liu, A.S. Huang, EDTA-functionalized covalent organic framework for the removal of heavy-metal ions, ACS Appl Mater Interfaces 11 (35) (2019) 32186-32191 |
[229] | G.L. Li, J.R. Ye, Q.L. Fang, F. Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (II), Chem. Eng. J. 370 (2019) 822-830 |
[230] | Z.A. Ghazi, A.M. Khattak, R. Iqbal, R. Ahmad, A.A. Khan, M. Usman, F. Nawaz, W. Ali, Z. Felegari, S.U. Jan, A. Iqbal, A. Ahmad, Adsorptive removal of Cd2+ from aqueous solutions by a highly stable covalent triazine-based framework, New J. Chem. 42 (12) (2018) 10234-10242 |
[231] | F.Z. Cui, R.R. Liang, Q.Y. Qi, G.F. Jiang, X. Zhao, Efficient removal of Cr(VI) from aqueous solutions by a dual-pore covalent organic framework, Adv. Sustainable Syst. 3 (4) (2019) 1800150 |
[232] | M.E. Suss, S. Porada, X. Sun, P.M. Biesheuvel, J. Yoon, V. Presser, Water desalination via capacitive deionization:What is it and what can we expect from it?Energy Environ. Sci. 8 (8) (2015) 2296-2319 |
[233] | Y.Q. Li, Z.B. Ding, X.L. Zhang, J.L. Li, X.J. Liu, T. Lu, Y.F. Yao, L.K. Pan, Novel hybrid capacitive deionization constructed by a redox-active covalent organic framework and its derived porous carbon for highly efficient desalination, J. Mater. Chem. A 7 (44) (2019) 25305-25313 |
[234] | R. Wen, Y. Li, M.C. Zhang, X.H. Guo, X. Li, X.F. Li, J. Han, S. Hu, W. Tan, L.J. Ma, S.J. Li, Graphene-synergized 2D covalent organic framework for adsorption:A mutual promotion strategy to achieve stabilization and functionalization simultaneously, J Hazard Mater 358 (2018) 273-285 |
[235] | X.H. Xiong, Z.W. Yu, L.L. Gong, Y. Tao, Z. Gao, L. Wang, W.H. Yin, L.X. Yang, F. Luo, Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions, Adv Sci (Weinh) 6 (16) (2019) 1900547 |
[236] | Z.D. Li, H.Q. Zhang, X.H. Xiong, F. Luo, U(VI) adsorption onto covalent organic frameworks-TpPa-1, J. Solid State Chem. 277 (2019) 484-492 |
[237] | A.P. Côté, A.I. Benin, N.W. Ockwig, M. O'Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks, Science 310 (5751) (2005) 1166-1170 |
[238] | Uribe-Romo FJ, Doonan CJ, Furukawa H, Oisaki K, Yaghi OM, Crystalline covalent organic frameworks with hydrazone linkages, J Am Chem Soc 133 (30) (2011) 11478-11481 |
[239] | Dalapati S, Jin S, Gao J, Xu Y, Nagai A, Jiang D, An azine-linked covalent organic framework, J Am Chem Soc 135 (46) (2013) 17310-17313 |
[240] | P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis, Angew. Chem. Int. Ed. 47 (18) (2008) 3450-3453 |
[241] | Guo J, Xu Y, Jin S, Chen L, Kaji T, Honsho Y, Addicoat MA, Kim J, Saeki A, Ihee H, Seki S, Irle S, Hiramoto M, Gao J, Jiang D, Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds, Nat Commun 4 (2013) 2736 |
[242] | J.L. Segura, M.J. Mancheño, F. Zamora, Covalent organic frameworks based on Schiff-base chemistry:Synthesis, properties and potential applications, Chem Soc Rev 45 (20) (2016) 5635-5671 |
[243] | F.J. Uribe-Romo, J.R. Hunt, H. Furukawa, C. Klöck, M. O'Keeffe, O.M. Yaghi, A crystalline imine-linked 3-D porous covalent organic framework, J. Am. Chem. Soc. 131 (13) (2009) 4570-4571 |
[244] | S. Kandambeth, D.B. Shinde, M.K. Panda, B. Lukose, T. Heine, R. Banerjee, Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds, Angew Chem Int Ed Engl 52 (49) (2013) 13052-13056 |
[245] | Y. Li, C. Wang, S.J. Ma, H.Y. Zhang, J.J. Ou, Y.M. Wei, M.L. Ye, Fabrication of hydrazone-linked covalent organic frameworks using alkyl amine as building block for high adsorption capacity of metal ions, ACS Appl Mater Interfaces 11 (12) (2019) 11706-11714 |
[246] | A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment-A review, Chem. Eng. J. 157 (2-3) (2010) 277-296 |
[247] | G.B. T.M. Sonqishe, E. Iwouha, L. Petrik, Treatment of brines using commercial zeolites and zeolites synthesized from fly ash derivative, in:The International Mine Water Conference Proceedings, 2008 |
[248] | L. Guo, X.F. Wang, Z.Y. Leong, R.W. Mo, L.F. Sun, H.Y. Yang, Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination, FlatChem 8 (2018) 17-24 |
[249] | W.L. Xing, J. Liang, W.W. Tang, G.M. Zeng, X.X. Wang, X.D. Li, L.B. Jiang, Y. Luo, X. Li, N. Tang, M. Huang, Perchlorate removal from brackish water by capacitive deionization:Experimental and theoretical investigations, Chem. Eng. J. 361 (2019) 209-218 |
[250] | F.A. AlMarzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of Capacitive Deionisation in water desalination:A review, Desalination 342 (2014) 3-15 |
[251] | C.J. Gabelich, T.D. Tran, I.H. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ Sci Technol 36 (13) (2002) 3010-3019 |
[252] | J.B. Lee, K.K. Park, H.M. Eum, C.W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination 196 (1-3) (2006) 125-134 |
[253] | S.J. Seo, H. Jeon, J.K. Lee, G.Y. Kim, D. Park, H. Nojima, J. Lee, S.H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res 44 (7) (2010) 2267-2275 |
[254] | Y.J. Kim, J.H. Choi, Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol. 71 (1) (2010) 70-75 |
[255] | G. Wang, Q. Dong, Z. Ling, C. Pan, C. Yu, J.S. Qiu, Hierarchical activated carbon nanofiber webs with tuned structure fabricated by electrospinning for capacitive deionization, J. Mater. Chem. 22 (41) (2012) 21819 |
[256] | Y.K. Zhan, C.Y. Nie, H.B. Li, L.K. Pan, Z. Sun, Enhancement of electrosorption capacity of activated carbon fibers by grafting with carbon nanofibers, Electrochimica Acta 56 (9) (2011) 3164-3169 |
[257] | S. Porada, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, P.M. Biesheuvel, Water desalination using capacitive deionization with microporous carbon electrodes, ACS Appl Mater Interfaces 4 (3) (2012) 1194-1199 |
[258] | Ryoo MW, Seo G, Improvement in capacitive deionization function of activated carbon cloth by titania modification, Water Res 37 (7) (2003) 1527-1534 |
[259] | C.Y. Nie, L.K. Pan, H.B. Li, T.Q. Chen, T. Lu, Z. Sun, Electrophoretic deposition of carbon nanotubes film electrodes for capacitive deionization, J. Electroanal. Chem. 666 (2012) 85-88 |
[260] | K. Dai, L.Y. Shi, J.H. Fang, D.S. Zhang, B.K. Yu, NaCl adsorption in multi-walled carbon nanotubes, Mater. Lett. 59 (16) (2005) 1989-1992 |
[261] | L.X. Li, L.D. Zou, H.H. Song, G. Morris, Ordered mesoporous carbons synthesized by a modified Sol-gel process for electrosorptive removal of sodium chloride, Carbon 47 (3) (2009) 775-781 |
[262] | G. Wang, C. Pan, L.P. Wang, Q. Dong, C. Yu, Z.B. Zhao, J.S. Qiu, Activated carbon nanofiber webs made by electrospinning for capacitive deionization, Electrochimica Acta 69 (2012) 65-70 |
[263] | C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ Sci Technol 45 (23) (2011) 10243-10249 |
[264] | P. Xu, J.E. Drewes, D. Heil, G. Wang, Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology, Water Res 42 (10-11) (2008) 2605-2617 |
[265] | S. Kim, H. Yoon, D. Shin, J. Lee, J. Yoon, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide, J Colloid Interface Sci 506 (2017) 644-648 |
[266] | S. Kim, J. Lee, J.S. Kang, K. Jo, S. Kim, Y.E. Sung, J. Yoon, Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system, Chemosphere 125 (2015) 50-56 |
[267] | J. Lee, S.H. Yu, C. Kim, Y.E. Sung, J. Yoon, Highly selective lithium recovery from brine using a λ-MnO2-Ag battery, Phys Chem Chem Phys 15 (20) (2013) 7690-7695 |
[268] | Y.B. Zhao, B.L. Liang, X.J. Wei, K.X. Li, C. Lv, Y. Zhao, A core-shell heterostructured CuFe@NiFe Prussian blue analogue as a novel electrode material for high-capacity and stable capacitive deionization, J. Mater. Chem. A 7 (17) (2019) 10464-10474 |
[269] | S.A. Hawks, M.R. Cerón, D.I. Oyarzun, T.A. Pham, C. Zhan, C.K. Loeb, D. Mew, A. Deinhart, B.C. Wood, J.G. Santiago, M. Stadermann, P.G. Campbell, Using ultramicroporous carbon for the selective removal of nitrate with capacitive deionization, Environ Sci Technol 53 (18) (2019) 10863-10870 |
[270] | D.I. Oyarzun, A. Hemmatifar, J.W. Palko, M. Stadermann, J.G. Santiago, Adsorption and capacitive regeneration of nitrate using inverted capacitive deionization with surfactant functionalized carbon electrodes, Sep. Purif. Technol. 194 (2018) 410-415 |
[271] | D.I. Oyarzun, A. Hemmatifar, J.W. Palko, M. Stadermann, J.G. Santiago, Ion selectivity in capacitive deionization with functionalized electrode:Theory and experimental validation, Water Res X 1 (2018) 100008 |
[272] | X. Su, K.J. Tan, J. Elbert, C. Rüttiger, M. Gallei, T.F. Jamison, T.A. Hatton, Asymmetric Faradaic systems for selective electrochemical separations, Energy Environ. Sci. 10 (5) (2017) 1272-1283 |
[273] | Q.H. Ji, X.Q. An, H.J. Liu, L. Guo, J.H. Qu, Electric double-layer effects induce separation of aqueous metal ions, ACS Nano 9 (11) (2015) 10922-10930 |
[274] | Q.H. Ji, C.Z. Hu, H.J. Liu, J.H. Qu, Development of nitrogen-doped carbon for selective metal ion capture, Chem. Eng. J. 350 (2018) 608-615 |
[275] | J. Wang, J.H. Dai, Z.S. Jiang, B.L. Chu, F.M. Chen, Recent progress and prospect of flow-electrode electrochemical desalination system, Desalination 504 (2021) 114964 |
[276] | J. Lee, D. Weingarth, I. Grobelsek, V. Presser, Use of surfactants for continuous operation of aqueous electrochemical flow capacitors, Energy Technol. 4 (1) (2016) 75-84 |
[277] | S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci. 58 (8) (2013) 1388-1442 |
[278] | Y.J. Kim, J.H. Choi, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res 44 (3) (2010) 990-996 |
[279] | J.H. Yeo, J.H. Choi, Enhancement of nitrate removal from a solution of mixed nitrate, chloride and sulfate ions using a nitrate-selective carbon electrode, Desalination 320 (2013) 10-16 |
[280] | Y.J. Kim, J.H. Choi, Selective removal of nitrate ion using a novel composite carbon electrode in capacitive deionization, Water Res 46 (18) (2012) 6033-6039 |
[281] | J. Choi, H. Lee, S. Hong, Capacitive deionization (CDI) integrated with monovalent cation selective membrane for producing divalent cation-rich solution, Desalination 400 (2016) 38-46 |
[282] | K.C. Zuo, J. Kim, A. Jain, T.X. Wang, R. Verduzco, M.C. Long, Q.L. Li, Novel composite electrodes for selective removal of sulfate by the capacitive deionization process, Environ Sci Technol 52 (16) (2018) 9486-9494 |
[283] | J. Kim, A. Jain, K.C. Zuo, R. Verduzco, S. Walker, M. Elimelech, Z.H. Zhang, X.H. Zhang, Q.L. Li, Removal of calcium ions from water by selective electrosorption using target-ion specific nanocomposite electrode, Water Res 160 (2019) 445-453 |
[284] | P. Srimuk, M. Zeiger, N. Jäckel, A. Tolosa, B. Krüner, S. Fleischmann, I. Grobelsek, M. Aslan, B. Shvartsev, M.E. Suss, V. Presser, Enhanced performance stability of carbon/titania hybrid electrodes during capacitive deionization of oxygen saturated saline water, Electrochimica Acta 224 (2017) 314-328 |
[285] | X. Gao, A. Omosebi, N. Holubowitch, A. Liu, K. Ruh, J. Landon, K. Liu, Polymer-coated composite anodes for efficient and stable capacitive deionization, Desalination 399 (2016) 16-20 |
[286] | I. Cohen, E. Avraham, Y. Bouhadana, A. Soffer, D. Aurbach, Long term stability of capacitive de-ionization processes for water desalination:The challenge of positive electrodes corrosion, Electrochimica Acta 106 (2013) 91-100 |
[287] | N. Hilal, G.J. Kim, C. Somerfield, Boron removal from saline water:A comprehensive review, Desalination 273 (1) (2011) 23-35 |
[288] | J.A. Howell, R.W. Field, D.X. Wu, Yeast cell microfiltration:Flux enhancement in baffled and pulsatile flow systems, J. Membr. Sci. 80 (1) (1993) 59-71 |
[289] | C.S. Parnham, R.H. Davis, Protein recovery from bacterial cell debris using crossflow microfiltration with backpulsing, J. Membr. Sci. 118 (2) (1996) 259-268 |
[290] | M.W. Chudacek, A.G. Fane, The dynamics of polarisation in unstirred and stirred ultrafiltration, J. Membr. Sci. 21 (2) (1984) 145-160 |
[291] | N. Kabay, İ. Yilmaz, M. Bryjak, M. Yüksel, Removal of boron from aqueous solutions by a hybrid ion exchange-membrane process, Desalination 198 (1-3) (2006) 158-165 |
[292] | A.B. Koltuniewicz, A. Witek, K. Bezak, Efficiency of membrane-sorption integrated processes, J. Membr. Sci. 239 (1) (2004) 129-141 |
[293] | H. Sun, B. Tang, P. Wu, Development of Hybrid Ultrafiltration Membranes with Improved Water Separation Properties Using Modified Superhydrophilic Metal-Organic Framework Nanoparticles, ACS Applied Materials & Interfaces, 9 (2017) 21473-21484 |
[294] | H. Wang, S. Zhao, Y. Liu, R.X. Yao, X.Q. Wang, Y.H. Cao, D. Ma, M.C. Zou, A.Y. Cao, X. Feng, B. Wang, Membrane adsorbers with ultrahigh metal-organic framework loading for high flux separations, Nat. Commun. 10 (2019) 4204 |
[295] | B. Qiu, S. Fan, Y. Chen, J. Chen, Y. Wang, Y. Wang, J. Liu, Z. Xiao, Micro membrane absorber with deep-permeation nano structure assembled by flowing synthesis, AIChE J., (2021) e17272. (in press) |
[296] | A.A. Uliana, N.T. Bui, J. Kamcev, M.K. Taylor, J.J. Urban, J.R. Long, Ion-capture electrodialysis using multifunctional adsorptive membranes, Science 372 (6539) (2021) 296-299 |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||