[1] X.Y. Xie, Q. Zhou, X.M. Hu, X.Y. Jia, L.H. Huang, Zn-Al hydrotalcite-derived CoxZny AlOz catalysts for hydrogen generation by auto-thermal reforming of acetic acid, Int. J. Energy Res. 37 (2019) er.4729. DOI:10.1002/er.4729 [2] D.H. Mei, V. Lebarbier Dagle, R. Xing, K.O. Albrecht, R.A. Dagle, Steam reforming of ethylene glycol over MgAl2O4 supported Rh, ni, and Co catalysts, ACS Catal. 6 (1) (2016) 315-325 [3] N. Wang, K. Shen, L.H. Huang, X.P. Yu, W.Z. Qian, W. Chu, Facile route for synthesizing ordered mesoporous Ni-Ce-Al oxide materials and their catalytic performance for methane dry reforming to hydrogen and syngas, ACS Catal. 3 (7) (2013) 1638-1651 [4] H. Wang, X.D. Wang, M.S. Li, S.R. Li, S.P. Wang, X.B. Ma, Thermodynamic analysis of hydrogen production from glycerol autothermal reforming, Int. J. Hydrog. Energy 34 (14) (2009) 5683-5690 [5] Q. Wang, W. Xie, X.Y. Jia, B.Q. Chen, S. An, X.Y. Xie, L.H. Huang, Ca-Al layered double hydroxides-derived Ni-based catalysts for hydrogen production via auto-thermal reforming of acetic acid, Int. J. Hydrog. Energy 44 (36) (2019) 20007-20016 [6] J.X. Chen, H. Shi, L. Li, K.L. Li, Deoxygenation of methyl laurate as a model compound to hydrocarbons on transition metal phosphide catalysts, Appl. Catal. B:Environ. 144 (2014) 870-884 [7] M. Armbrüster, R. Schlögl, Y. Grin, Intermetallic compounds in heterogeneous catalysis-a quickly developing field, Sci Technol Adv Mater 15 (3) (2014) 034803 [8] X. Li, C. Zhang, H. Cheng, L. He, W. Lin, Y. Yu, F. Zhao, Effect of Zn doping on the hydrogenolysis of glycerol over ZnNiAl catalyst, J. Mol. Catal. A Chem. 395 (2014) 1-6 [9] S. Kameoka, T. Kimura, A. P. Tsai, A Novel Process for Preparation of Unsupported Mesoporous Intermetallic NiZn and PdZn Catalysts, Catal. Letters. 131 (2009) 219-224 [10] G. Fan, F. Li, D. G. Evans, X. Duan, Catalytic applications of layered double hydroxides:recent advances and perspectives, Chem. Soc. Rev. 43 (2014) 7040-7066 [11] B. K. Choi, Y. H. Park, D. J. Moon, N. C. Park, Y. C. Kim, Effect of Bimetallic Ni-Cr Catalysts for Steam-CO2 Reforming of Methane at High Pressure, J. Nanosci. Nanotechnol. 15 (2015) 5259-5263 [12] S. An, Y. Zhang, X. Hu, X. Xie, Q. Wang, H. Chen, L. Huang, Durable Mn(II)Cr(III)Ox composites-supported Ni-based catalysts with wide dynamic range for hydrogen production via auto-thermal reforming of acetic acid, Fuel 278 (2020) 118227 [13] Y. Xia, H. Dai, L. Zhang, J. Deng, H. He, C. T. Au, Ultrasound-assisted nanocasting fabrication and excellent catalytic performance of three-dimensionally ordered mesoporous chromia for the combustion of formaldehyde, acetone, and methanol, Appl. Catal. B Environ. 100 (2010) 229-237 [14] Synthesis of Ni SiO2/C supported platinum catalysts for improved electrochemical activity towards ethanol oxidation [15] G. Chen, N. Xu, X. Li, Q. Liu, H. Yang, W. Li, Hydrogen production by aqueous-phase reforming of ethylene glycol over a Ni/Zn/Al derived hydrotalcite catalyst, RSC Adv. 5 (2015) 60128-60134 [16] C. S. Spanjers, J. T. Held, M. J. Jones, D. D. Stanley, R. S. Sim, M. J. Janik, R. M. Rioux, Zinc inclusion to heterogeneous nickel catalysts reduces oligomerization during the semi-hydrogenation of acetylene, J. Catal. 316 (2014) 164-173 [17] X. Dong, M. Song, B. Jin, Z. Zhou, X. Yang, The Synergy Effect of Ni-M (M=Mo, Fe, Co, Mn or Cr) Bicomponent Catalysts on Partial Methanation Coupling with Water Gas Shift under Low H-2/CO Conditions, Catalysts 7 (2017) 51 [18] W. Wang, X. Li, Y. Zhang, R. Zhang, H. Ge, J. Bi, M. Tang, Strong metal-support interactions between Ni and ZnO particles and their effect on the methanation performance of Ni/ZnO, Catal. Sci. Technol. 7 (2017) 4413-4421 [19] Z. Pan, R. Wang, J. Chen, Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts:Geometric and electronic effects of oxophilic Zn, Appl. Catal. B Environ. 224 (2018) 88-100 [20] Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol [21] E. C. Vagia, A. A. Lemonidou, Investigations on the properties of ceria-zirconia-supported Ni and Rh catalysts and their performance in acetic acid steam reforming, J. Catal. 269 (2010) 388-396 [22] M. L. Toebes, T. A. Nijhuis, J. Hajek, J. H. Bitter, A. J. van Dillen, D. Y. Murzin, K. P. de Jong, Support effects in hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts:Kinetic modeling,Chem. Eng. Sci. 60 (2005) 5682-5695 [23] Q. Zhou, X. Zhong, X. Xie, X. Jia, B. Chen, N. Wang, L. Huang, Auto-thermal reforming of acetic acid for hydrogen production by ordered mesoporous Ni-xSm-Al-O catalysts:Effect of samarium promotion, Renew Energ. 145 (2020) 2316-2326 [24] N. Wang, W. Chu, T. Zhang, X. S. Zhao, Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas, Int. J. Hydrog. Energ. 37 (2012) 19-30 [25] X. M. Hu, J. L. Yang, W. J. Sun, N. Wang, S. An, Q. Wang, Y. Zhang, X. Y. Xie, L. H. Huang, Y-Zr-O solid solution supported Ni-based catalysts for hydrogen production via auto-thermal reforming of acetic acid, Appl. Catal. B Environ. 278 (2020) 119264 [26] H. G. Li, X. Y. Jia, N. Wang, B. Q. Chen, X. Y. Xie, Q. Wang, L. H. Huang, Auto-thermal reforming of acetic acid over hydrotalcites-derived co-based catalyst:A stable and anti-coking Co/Sr-Alx-O catalyst, Appl. Catal. B Environ. 267 (2020) 118370 [27] M. Friedrich, D. Teschner, A. Knop-Gericke, M. Armbruster, Surface and Subsurface Dynamics of the Intermetallic Compound ZnNi in Methanol Steam Reforming, J. Phys. Chem. C 116 (2012) 14930-14935 [28] Effect of Zn addition on the performance of Ni/Al2O3 catalyst for steam reforming of ethanol, Appl. Catal. A Gen. 519 (2016)85-98. |