[1] L. Marzo, S.K. Pagire, O. Reiser, B. König, Visible-light photocatalysis:Does it make a difference in organic synthesis? Angew. Chem. Int. Ed Engl. 57 (32) (2018) 10034-10072. https://pubmed.ncbi.nlm.nih.gov/29457971/ [2] Y.B. Wang, X. Zhao, D. Cao, Y. Wang, Y.F. Zhu, Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid, Appl. Catal. B Environ. 211 (2017) 79-88. http://dx.doi.org/10.1016/j.apcatb.2017.03.079 [3] W.J. Ong, L.L. Tan, Y.H. Ng, S.T. Yong, S.P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation:Are we a step closer to achieving sustainability? Chem. Rev. 116 (12) (2016) 7159-7329. https://pubmed.ncbi.nlm.nih.gov/27199146/ [4] Q. Liu, T.X. Chen, Y.R. Guo, Z.G. Zhang, X.M. Fang, Ultrathin g-C3N4 nanosheets coupled with carbon nanodots as 2D/0D composites for efficient photocatalytic H2 evolution, Appl. Catal. B Environ. 193 (2016) 248-258. http://dx.doi.org/10.1016/j.apcatb.2016.04.034 [5] T.M. Di, Q.L. Xu, W. Ho, H. Tang, Q.J. Xiang, J.G. Yu, Review on metal sulphide-based Z-scheme photocatalysts, ChemCatChem 11 (5) (2019) 1394-1411. https://doi.org/10.1002/cctc.201802024 [6] L.B. Jiang, X.Z. Yuan, Y. Pan, J. Liang, G.M. Zeng, Z.B. Wu, H. Wang, Doping of graphitic carbon nitride for photocatalysis:A reveiw, Appl. Catal. B Environ. 217 (2017) 388-406. http://dx.doi.org/10.1016/j.apcatb.2017.06.003 [7] J. Wen, J. Xie, X. Chen, X. Li, A review on g-C3N4 -based photocatalysts, Appl. Surf. Sci., 2017, 391, 72-123 [8] J. Liu, Y. Liu, N. Liu, Y. Han, X. Zhang, H. Huang, Y. Lifshitz, S.T. Lee, J. Zhong, Z. Kang, Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway, Science 347 (6225) (2015) 970-974. https://pubmed.ncbi.nlm.nih.gov/25722405/ [9] S. Kumar, S. Karthikeyan, A. Lee, G-C3N4-based nanomaterials for visible light-driven photocatalysis, Catalysts 8 (2) (2018) 74. https://doi.org/10.3390/catal8020074 [10] L. Wang, M.J. Cai, W. Sun, L. He, X.H. Zhang, Promoting charge separation in semiconductor nanocrystal superstructures for enhanced photocatalytic activity, Adv. Mater. Interfaces 5 (13) (2018) 1701694. https://doi.org/10.1002/admi.201701694 [11] J.J. Liu, E.D. Hua, High photocatalytic activity of heptazine-based g-C3N4/SnS2 heterojunction and its origin:Insights from hybrid DFT, J. Phys. Chem. C 121 (46) (2017) 25827-25835. https://doi.org/10.1021/acs.jpcc.7b07914 [12] Q.N. Li, Y.G. Xia, K.L. Wei, X.T. Ding, S. Dong, X.L. Jiao, D.R. Chen, Ferroelectric enhanced Z-scheme P-doped g-C3N4/PANI/BaTiO3 ternary heterojunction with boosted visible-light photocatalytic water splitting, New J. Chem. 43 (17) (2019) 6753-6764. https://doi.org/10.1039/c9nj00647h [13] X.Q. Yan, M.Y. Xia, B.R. Xu, J.J. Wei, B.L. Yang, G.D. Yang, Fabrication of novel all-solid-state Z-scheme heterojunctions of 3DOM-WO3/Pt coated by mono-or few-layered WS2 for efficient photocatalytic decomposition performance in Vis-NIR region, Appl. Catal. B Environ. 232 (2018) 481-491. http://dx.doi.org/10.1016/j.apcatb.2018.03.068 [14] B. Lin, H. Li, H. An, W.B. Hao, J.J. Wei, Y.Z. Dai, C.S. Ma, G.D. Yang, Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high-efficiency photocatalytic hydrogen evolution, Appl. Catal. B Environ. 220 (2018) 542-552. http://dx.doi.org/10.1016/j.apcatb.2017.08.071 [15] Z.M. Pan, Y. Zheng, F.S. Guo, P.P. Niu, X.C. Wang, Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers, ChemSusChem 10 (1) (2017) 87-90. https://pubmed.ncbi.nlm.nih.gov/27561380/ [16] S.E. Guo, Z.P. Deng, M.X. Li, B.J. Jiang, C.G. Tian, Q.J. Pan, H.G. Fu, Phosphorus-doped carbon nitride tubes with a layered micro-nanostructure for enhanced visible-light photocatalytic hydrogen evolution, Angew. Chem. Int. Ed Engl. 55 (5) (2016) 1830-1834. https://pubmed.ncbi.nlm.nih.gov/26692105/ [17] Z.B. Liang, X.F. Dong, Y.L. Han, J.M. Geng, In-situ growth of 0D/2D Ni2P quantum dots/red phosphorus nanosheets with p-n heterojunction for efficient photocatalytic H2 evolution under visible light, Appl. Surf. Sci. 484 (2019) 293-299. http://dx.doi.org/10.1016/j.apsusc.2019.04.006 [18] Z.X. Qin, F. Xue, Y.B. Chen, S.H. Shen, L.J. Guo, Spatial charge separation of one-dimensional Ni2P-Cd0.9Zn0.1S/g-C3N4 heterostructure for high-quantum-yield photocatalytic hydrogen production, Appl. Catal. B Environ. 217 (2017) 551-559. http://dx.doi.org/10.1016/j.apcatb.2017.06.018 [19] A.B. Laursen, R. Wexler, M.J. Whitaker, E.J. Izett, K.U.D. Calvinho, S. Hwang, R. Rucker, H. Wang, J. Li, E. Garfunkel, M. Greenblatt, A. Rappe, G. Dismukes, Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion:Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali, ACS Catal. 8 (2018) 4408-4419. http://dx.doi.org/10.1021/ACSCATAL.7B04466 [20] J.Y. Li, W. Cui, Y.J. Sun, Y.H. Chu, W.L. Cen, F. Dong, Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency, J. Mater. Chem. A 5 (19) (2017) 9358-9364. https://doi.org/10.1039/c7ta02183f [21] G.Z. Liang, M. Waqas, B. Yang, K. Xiao, J.Y. Li, C.Z. Zhu, J.M. Zhang, H.B. Duan, Enhanced photocatalytic hydrogen evolution under visible light irradiation by p-type MoS2/n-type Ni2P doped g-C3N4, Appl. Surf. Sci. 504 (2020) 144448. http://dx.doi.org/10.1016/j.apsusc.2019.144448 [22] X.F. Wang, J.J. Cheng, H.G. Yu, J.G. Yu, A facile hydrothermal synthesis of carbon dots modified g-C3N4 for enhanced photocatalytic H2-evolution performance, Dalton Trans. 46 (19) (2017) 6417-6424. https://pubmed.ncbi.nlm.nih.gov/28470324/ [23] M.Y. Wu, P.F. Da, T. Zhang, J. Mao, H. Liu, T. Ling, Designing hybrid NiP 2/NiO nanorod arrays for efficient alkaline hydrogen evolution, ACS Appl. Mater. Interfaces 10 (21) (2018) 17896-17902. https://pubmed.ncbi.nlm.nih.gov/29741363/ [24] Q.H. Cao, C.Q. Wang, S.J. Chen, X.D. Xu, F.G. Liu, X.H. Geng, J.H. Wang, Vertically aligned NiP2 nanosheets with interlaced mesh network for highly efficient water splitting under alkaline and acid solutions, Int. J. Hydrog. Energy 44 (13) (2019) 6535-6543. http://dx.doi.org/10.1016/j.ijhydene.2019.01.172 [25] S.B. Yang, Y.J. Gong, J.S. Zhang, L. Zhan, L.L. Ma, Z.Y. Fang, R. Vajtai, X.C. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, Adv. Mater. 25 (17) (2013) 2452-2456. https://doi.org/10.1002/adma.201204453 [26] D.L. Jiang, T.Y. Wang, Q. Xu, D. Li, S.C. Meng, M. Chen, Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline, Appl. Catal. B Environ. 201 (2017) 617-628. http://dx.doi.org/10.1016/j.apcatb.2016.09.001 [27] W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, Graphene oxide as a structure-directing agent for the two-dimensional interface engineering of sandwich-like graphene-g-C3N4 hybrid nanostructures with enhanced visible-light photoreduction of CO2 to methane, Chem. Commun. (Camb) 51 (5) (2015) 858-861. https://pubmed.ncbi.nlm.nih.gov/25429376/ [28] X. Liang, B.X. Zheng, L.G. Chen, J.T. Zhang, Z.B. Zhuang, B.H. Chen, MOF-derived formation of Ni2 P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting, ACS Appl. Mater. Interfaces 9 (27) (2017) 23222-23229. https://pubmed.ncbi.nlm.nih.gov/28613810/ [29] Y.M. Zhong, J.L. Yuan, J.Q. Wen, X. Li, Y.H. Xu, W. Liu, S.S. Zhang, Y.P. Fang, Earth-abundant NiS co-catalyst modified metal-free mpg-C3N4/CNT nanocomposites for highly efficient visible-light photocatalytic H2 evolution, Dalton Trans. 44 (41) (2015) 18260-18269. https://pubmed.ncbi.nlm.nih.gov/26426584/ [30] J.J. Xue, S.S. Ma, Y.M. Zhou, Z.W. Zhang, M. He, Facile photochemical synthesis of Au/Pt/g-C3N4 with plasmon-enhanced photocatalytic activity for antibiotic degradation, ACS Appl. Mater. Interfaces 7 (18) (2015) 9630-9637. https://pubmed.ncbi.nlm.nih.gov/25891123/ [31] B.C. Zhu, L.Y. Zhang, B. Cheng, J.G. Yu, First-principle calculation study of tri-s-triazine-based g-C3N4:A review, Appl. Catal. B Environ. 224 (2018) 983-999. http://dx.doi.org/10.1016/j.apcatb.2017.11.025 [32] W.W. Cai, W.Z. Liu, H.S. Sun, J.Q. Li, L.M. Yang, M.J. Liu, S.L. Zhao, A.J. Wang, Ni5P4-NiP2 nanosheet matrix enhances electron-transfer kinetics for hydrogen recovery in microbial electrolysis cells, Appl. Energy 209 (2018) 56-64. http://dx.doi.org/10.1016/j.apenergy.2017.10.082 [33] J.Y. Li, X.A. Dong, Y.J. Sun, W.L. Cen, F. Dong, Facet-dependent interfacial charge separation and transfer in plasmonic photocatalysts, Appl. Catal. B Environ. 226 (2018) 269-277. http://dx.doi.org/10.1016/j.apcatb.2017.12.057 [34] J.J. Liu, Origin of high photocatalytic efficiency in monolayer g-C3N4/CdS heterostructure:A hybrid DFT study, J. Phys. Chem. C 119 (51) (2015) 28417-28423. https://doi.org/10.1021/acs.jpcc.5b09092 [35] J. Greeley, J.K. Nørskov, L.A. Kibler, A.M. El-Aziz, D.M. Kolb, Hydrogen evolution over bimetallic systems:Understanding the trends, Chemphyschem 7 (5) (2006) 1032-1035. https://pubmed.ncbi.nlm.nih.gov/16557633/ [36] J. Li, D.D. Wu, J. Iocozzia, H.W. Du, X.Q. Liu, Y.P. Yuan, W. Zhou, Z. Li, Z.M. Xue, Z.Q. Lin, Achieving efficient incorporation of Π-electrons into graphitic carbon nitride for markedly improved hydrogen generation, Angew. Chem. (2018) ange.201813117. https://doi.org/10.1002/ange.201813117 [37] W.J. Wang, T.C. An, G.Y. Li, D.H. Xia, H.J. Zhao, J.C. Yu, P.K. Wong, Earth-abundant Ni2P/g-C3N4 lamellar nanohydrids for enhanced photocatalytic hydrogen evolution and bacterial inactivation under visible light irradiation, Appl. Catal. B Environ. 217 (2017) 570-580. http://dx.doi.org/10.1016/j.apcatb.2017.06.027 |