[1] ASHRAE, ASHRAE Handbook-HVAC Systems and Equipment, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc., Atlanta, 2000 [2] J.C. Min, T. Hu, X.W. Liu, Evaluation of moisture diffusivities in various membranes, J. Membr. Sci. 357 (1-2) (2010) 185-191 [3] J.C. Min, T. Hu, Y.Z. Song, Experimental and numerical investigations of moisture permeation through membranes, J. Membr. Sci. 367 (1-2) (2011) 174-181 [4] L.Z. Zhang, Y. Jiang, Heat and mass transfer in a membrane-based energy recovery ventilator, J. Membr. Sci. 163 (1) (1999) 29-38 [5] J.L. Niu, L.Z. Zhang, Membrane-based Enthalpy Exchanger:material considerations and clarification of moisture resistance, J. Membr. Sci. 189 (2) (2001) 179-191 [6] L.Z. Zhang, J.L. Niu, Effectiveness correlations for heat and moisture transfer processes in an enthalpy exchanger with membrane cores, J. Heat Transf. 124 (5) (2002) 922-929 [7] J.C. Min, M. Su, Performance analysis of a membrane-based energy recovery ventilator:Effects of membrane spacing and thickness on the ventilator performance, Appl. Therm. Eng. 30 (8-9) (2010) 991-997 [8] J.C. Min, M. Su, Performance analysis of a membrane-based enthalpy exchanger:Effects of the membrane properties on the exchanger performance, J. Membr. Sci. 348 (1-2) (2010) 376-382 [9] J.C. Min, M. Su, Performance analysis of a membrane-based energy recovery ventilator:Effects of outdoor air state, Appl. Therm. Eng. 31 (17-18) (2011) 4036-4043 [10] J.C. Min, J.F. Duan, Membrane-type total heat exchanger performance with heat and moisture transferring in different directions across membranes, Appl. Therm. Eng. 91 (2015) 1040-1047 [11] J.C. Min, J.F. Duan, Comparison of various methods for evaluating the membrane-type total heat exchanger performance, Int. J. Heat Mass Transf. 100 (2016) 758-766 [12] R. Al-Waked, M.S. Nasif, D.B. Mostafa, Enhancing the performance of energy recovery ventilators, Energy Convers. Manag. 171 (2018) 196-210 [13] E.J. Lee, et al., Modeling and Verification of Heat and Moisture Transfer in an Enthalpy Exchanger Made of Paper Membrane. Int. J. Air-Cond. Refr. 20(3) (2012) 1-13 [14] A. Bejan, Irreversible Thermodynamics. Advanced Engineering Thermodynamics. John Wiley & Sons, Inc., New Jersey, 2016 [15] Y.Y. Fang, L.X. Bian, X.L. Wang, Understanding membrane parameters of a forward osmosis membrane based on nonequilibrium thermodynamics, J. Membr. Sci. 437 (2013) 72-81 [16] L.N. Wang, J.C. Min, Modeling and analyses of membrane osmotic distillation using non-equilibrium thermodynamics, J. Membr. Sci. 378 (1-2) (2011) 462-470 [17] L.N. Wang, J.C. Min, Studies of the process of moisture exchange across a membrane using irreversible thermodynamics, Chin. Sci. Bull. 56 (17) (2011) 1836-1843 [18] A.M. Toikka, A.V. Penkova, D.A. Markelov, Description and approximation of mass-transfer in pervaporation process on the base of nonequilibrium thermodynamics approach, Int. J. Heat Mass Transf. 72 (2014) 423-429 [19] A. Toikka, On non-equilibrium thermodynamics approach for the analysis of membrane processes:a case study of pervaporation, Monatshefte Für Chemie-Chem. Mon. 149 (2) (2018) 467-473 [20] J. Kuhn, R. Stemmer, F. Kapteijn, S. Kjelstrup, J. Gross, A non-equilibrium thermodynamics approach to model mass and heat transport for water pervaporation through a zeolite membrane, J. Membr. Sci. 330 (1-2) (2009) 388-398 [21] Y. Demirel, S.I. Sandler, Linear-nonequilibrium thermodynamics theory for coupled heat and mass transport, Int. J. Heat Mass Transf. 44 (13) (2001) 2439-2451 [22] L. Keulen, L.V. van der Ham, N.J.M. Kuipers, J.H. Hanemaaijer, T.J.H. Vlugt, S. Kjelstrup, Membrane distillation against a pressure difference, J. Membr. Sci. 524 (2017) 151-162 [23] C. Castel, E. Favre, Membrane separations and energy efficiency, J. Membr. Sci. 548 (2018) 345-357 [24] C.Q. Wu, H.J. Xu, C.Y. Zhao, A new fractal model on fluid flow/heat/mass transport in complex porous structures, Int. J. Heat Mass Transf. 162 (2020) 120292 [25] Y.C. Tang, J.C. Min, Water film coverage model and its application to the convective air-drying simulation of a wet porous medium, Int. J. Heat Mass Transf. 131 (2019) 999-1008 [26] F. P. Incropera, Fundamentals of heat and mass transfer. John Wiley & Sons, Inc., New Jersey, 2006 [27] T. H. Kuehn, J. W. Ramsey, J. L Threkeld. Thermal Environmental Engineering,3rd ed., Prentice Hall, Upper Saddle River, New Jersey, 1998 [28] D.E. Winterbone, A.L. Turan, Irreversible thermodynamics. Advanced Thermodynamics for Engineers. Amsterdam:Elsevier, 2015:467-495 [29] ASHRAE, ASHRAE Handbook-Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers,nullASHRAE:Atlanta, GA, USA, 2001. [30] C.J. Simonson, R.W. Besant, Energy wheel effectiveness:part I-development of dimensionless groups, Int. J. Heat Mass Transf. 42 (12) (1999) 2161-2170 [31] T. Hu, J.C. Min, Y.Z. Song, Analysis of the effects of mass transfer on heat transfer in the process of moisture exchange across a membrane. Chin. Sci. Bull. 55 (12) (2010) 1221-1225 [32] T. Hu, J.C. Min, Y.Z. Song, Analysis of the effects of the heat of sorption on the process of heat transfer in moisture exchange across a membrane, Sci. China Ser. E:Technol. Sci. 51 (12) (2008) 2120-2127 [33] J.C. Min, L.N. Wang, Membrane sorption property effects on transmembrane permeation, Chin. Sci. Bull. 56 (22) (2011) 2394-2399 |