[1] E.D. Sloan Jr, Fundamental principles and applications of natural gas hydrates, Nature 426 (6964) (2003) 353-363 [2] J.B. Zhang, Z.Y. Wang, S. Liu, W.G. Zhang, J. Yu, B.J. Sun, Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety, Appl. Energy 253 (2019) 113521 [3] G.C. Song, Y.X. Li, W.C. Wang, P.F. Zhao, K. Jiang, X. Ye, Experimental study of hydrate formation in oil-water systems using a high-pressure visual autoclave, AIChE J. 65 (9) (2019) e16667 [4] X.W. Zhang, E.O. Straume, G.A. Grasso, R.E.M. Morales, A.K. Sum, A bench-scale flow loop study on hydrate deposition under multiphase flow conditions, Fuel 262 (2020) 116558 [5] C.L. Bassani, A.K. Sum, J.-M. Herri, R.E.M. Morales, A. Cameirão, A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions:II. Growth kinetic model, Ind. Eng. Chem. Res. 59 (5) (2020) 2123-2144 [6] G.C. Song, Y.X. Li, W.C. Wang, S. Liu, X.Y. Wang, Z.Z. Shi, S.P. Yao, Experimental investigation on the microprocess of hydrate particle agglomeration using a high-speed camera, Fuel 237 (2019) 475-485 [7] L. Ding, B.H. Shi, Y. Liu, S.F. Song, W. Wang, H.H. Wu, J. Gong, Rheology of natural gas hydrate slurry:Effect of hydrate agglomeration and deposition, Fuel 239 (2019) 126-137 [8] Y. Wang, C.A. Koh, J.A. Dapena, L.E. Zerpa, A transient simulation model to predict hydrate formation rate in both oil- and water-dominated systems in pipelines, J. Nat. Gas Sci. Eng. 58 (2018) 126-134 [9] H.Y. Liang, L. Yang, Y.C. Song, J.F. Zhao, New approach for determining the reaction rate constant of hydrate formation via X-ray computed tomography, J. Phys. Chem. C 125 (1) (2021) 42-48 [10] N.B. Joshi, O.C. Mullins, A. Jamaluddin, J. Creek, J. McFadden, Asphaltene precipitation from live crude oil, Energy Fuels 15 (4) (2001) 979-986 [11] S.A. Morrissy, V.W. Lim, E.F. May, M.L. Johns, Z.M. Aman, B.F. Graham, Micromechanical cohesive force measurements between precipitated asphaltene solids and cyclopentane hydrates, Energy Fuels 29 (10) (2015) 6277-6285 [12] E. Jassim, M.A. Abdi, Y. Muzychka, A new approach to investigate hydrate deposition in gas-dominated flowlines, J. Nat. Gas Sci. Eng. 2 (4) (2010) 163-177 [13] Z.H. Chen, B. Liu, R. Manica, Q.X. Liu, Z.H. Xu, Interaction between the cyclopentane hydrate particle and water droplet in hydrocarbon oil, Langmuir 36 (8) (2020) 2063-2070 [14] I.K. Ivanova, M.E. Semenov, V.V. Koryakina, E.Y. Shits, I.I. Rozhin, Investigation of natural gas hydrates formation/decomposition processes in systems consisting of "Commercial Asphaltene-Resin-Paraffin Deposits and Water", Russ. J. Appl. Chem. 88 (6) (2015) 941-948 [15] D.X. Zhang, Q.Y. Huang, W. Wang, H.Y. Li, H.M. Zheng, R.B. Li, W.D. Li, W.M. Kong, Effects of waxes and asphaltenes on CO2 hydrate nucleation and decomposition in oil-dominated systems, J. Nat. Gas Sci. Eng. 88 (2021) 103799 [16] S.A. Morrissy, A.J. McKenzie, B.F. Graham, M.L. Johns, E.F. May, Z.M. Aman, Reduction of clathrate hydrate film growth rate by naturally occurring surface active components, Energy Fuels 31 (6) (2017) 5798-5805 [17] N. Daraboina, S. Pachitsas, N. von Solms, Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems, Fuel 148 (2015) 186-190 [18] E.M. Leporcher, J.L. Peytavy, Y. Mollier, J. Sjoblom, C. Labes-Carrier, Multiphase transportation:Hydrate plugging prevention through crude oil natural surfactants, in:Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, Sep 27-30, 1998. [19] M.C. Zi, D.Y. Chen, H.Q. Ji, G.Z. Wu, Effects of asphaltenes on the formation and decomposition of methane hydrate:A molecular dynamics study, Energy Fuels 30 (7) (2016) 5643-5650 [20] M.C. Zi, D.Y. Chen, G.Z. Wu, Molecular dynamics simulation of methane hydrate formation on metal surface with oil, Chem. Eng. Sci. 191 (2018) 253-261 [21] J.W. Lachance, E. Dendy Sloan, C.A. Koh, Effect of hydrate formation/dissociation on emulsion stability using DSC and visual techniques, Chem. Eng. Sci. 63 (15) (2008) 3942-3947 [22] D.C. Salmin, J. Delgado-Linares, D.T. Wu, L.E. Zerpa, C.A. Koh, Hydrate agglomeration in crude oil systems in which the asphaltene aggregation state is artificially modified, in:Proceedings of the Offshore Technology Conference, Houston, Texas, USA, May 6-9, 2019. [23] J.G. Delgado-Linares, D.C. Salmin, H. Stoner, D.T. Wu, L.E. Zerpa, C.A. Koh, Effect of alcohols on asphaltene-particle size and hydrate non-plugging behavior of crude oils, in:Proceedings of the Offshore Technology Conference, Houston, Texas, USA, May 4-7, 2020. [24] S.Q. Gao, Investigation of interactions between gas hydrates and several other flow assurance elements, Energy Fuels 22 (5) (2008) 3150-3153 [25] H.J. Zhao, M.W. Sun, A. Firoozabadi, Anti-agglomeration of natural gas hydrates in liquid condensate and crude oil at constant pressure conditions, Fuel 180 (2016) 187-193 [26] I.K. Ivanova, M. Ye Semenov, V.V. Koryakina, Peculiarities of hydrate formation in "natural gas/asphaltene-resin-paraffin deposits/water" systems, IOP Conf. Ser.:Earth Environ. Sci. 193 (2018) 012025 [27] D.J. Turner, K.T. Miller, E. Dendy Sloan, Methane hydrate formation and an inward growing shell model in water-in-oil dispersions, Chem. Eng. Sci. 64 (18) (2009) 3996-4004 [28] C.L. Bassani, A.M. Melchuna, A. Cameirão, J.-M. Herri, R.E.M. Morales, A.K. Sum, A multiscale approach for gas hydrates considering structure, agglomeration, and transportability under multiphase flow conditions:I. Phenomenological model, Ind. Eng. Chem. Res. 58(31) (2019) 14446-14461 [29] P.U. Karanjkar, J.W. Lee, J.F. Morris, Surfactant effects on hydrate crystallization at the water-oil interface:Hollow-conical crystals, Cryst. Growth Des. 12 (8) (2012) 3817-3824 [30] G.C. Song, Y.X. Ning, Y.X. Li, W.C. Wang, Investigation on hydrate growth at the oil-water interface:In the presence of wax and kinetic hydrate inhibitor, Langmuir 36 (48) (2020) 14881-14891 [31] S.B. Dong, C.W. Liu, W.W. Han, M.Z. Li, J. Zhang, G. Chen, The effect of the hydrate antiagglomerant on hydrate crystallization at the oil-water interface, ACS Omega 5 (7) (2020) 3315-3321 [32] E. Brown, S.J. Hu, J. Wells, X.H. Wang, C.A. Koh, Direct measurements of contact angles on cyclopentane hydrates, Energy Fuels 32 (6) (2018) 6619-6626 [33] D.J. Turner, K.T. Miller, E.D. Sloan, Direct conversion of water droplets to methane hydrate in crude oil, Chem. Eng. Sci. 64 (23) (2009) 5066-5072 [34] Y. Wang, C.A. Koh, J.A. Dapena, L.E. Zerpa, A transient simulation model to predict hydrate formation rate in both oil and water-dominated systems in pipelines, J. Nat. Gas Sci. Eng. 58 (2018) 126-134 [35] R. Camargo, T. Palermo, Rheological properties of hydrate suspensions in an asphaltenic crude oil, in:Proceedings of the Fourth International Conference on Gas Hydrates, Yokohama, Japan, 2002, pp. 880-885. [36] G.C. Song, Y.X. Li, W.C. Wang, K. Jiang, Z.Z. Shi, S.P. Yao, Numerical simulation of pipeline hydrate particle agglomeration based on population balance theory, J. Nat. Gas Sci. Eng. 51 (2018), 251-261 [37] K. Dann, L. Rosenfeld, Surfactant effect on hydrate crystallization at the oil-water interface, Langmuir 34 (21) (2018) 6085-6094 [38] M.C. Zi, G.Z. Wu, L. Li, D.Y. Chen, Molecular dynamics simulations of methane hydrate formation in model water-in-oil emulsion containing asphaltenes, J. Phys. Chem. C 122 (2018) 23299-23306 |