[1] R. Kant, Textile dyeing industry an environmental hazard, Nat. Sci. 4 (1) (2012) 22-26. https://doi.org/10.4236/ns.2012.41004 [2] M.A. Hassaan, A. El Nemr, Health and environmental impacts of dyes:Mini review, Am. J. Environ. Sci. Eng. 1 (2017) 64-67 [3] N.J. Kang, D.B. Xu, W.D. Shi, Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC), Chin. J. Chem. Eng. 27 (12) (2019) 3053-3059. http://dx.doi.org/10.1016/j.cjche.2019.05.008 [4] M.R. Al-Mamun, S. Kader, M.S. Islam, M.Z.H. Khan, Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment:A review, J. Environ. Chem. Eng. 7 (5) (2019) 103248. http://dx.doi.org/10.1016/j.jece.2019.103248 [5] J. Li, L. Wang, C.Q. Han, F.Y. Su, Y.M. Leng, L.Q. Ye, Industrial TiO2 based nacreous pigments as functional building materials:Photocatalytic removal of NO, Chin. J. Chem. Eng. 28 (10) (2020) 2587-2591. https://doi.org/10.1016/j.cjche.2020.05.029 [6] J.J. Zhang, Q.R. Liu, H. He, F. Shi, G.X. Huang, B.L. Xing, J.B. Jia, C.X. Zhang, Coal tar pitch as natural carbon quantum dots decorated on TiO2 for visible light photodegradation of rhodamine B, Carbon 152 (2019) 284-294. http://dx.doi.org/10.1016/j.carbon.2019.06.034 [7] F. Huang, A.H. Yan, H. Zhao, Influences of Doping on Photocatalytic Properties of TiO2 Photocatalyst. In:Semiconductor Photocatalysis-Materials, Mechanisms and Applications. Intech Open Limited, London, 2016. https://doi.org/10.5772/63234 [8] U.P.M. Ashik, A. Viswan, S. Kudo, J.I. Hayashi, Nanomaterials as catalysts. Applications of Nanomaterials. Amsterdam:Elsevier, 2018:45-82. https://doi.org/10.1016/b978-0-08-101971-9.00003-x [9] A. Abbas, L.T. Mariana, A.N. Phan, Biomass-waste derived graphene quantum dots and their applications, Carbon 140 (2018) 77-99. http://dx.doi.org/10.1016/j.carbon.2018.08.016 [10] A. Mehta, A. Mishra, Basu, N.P. Shetti, K.R. Reddy, T.A. Saleh, T.M. Aminabhavi, Band gap tuning and surface modification of carbon dots for sustainable environmental remediation and photocatalytic hydrogen production-A review, J Environ Manage 250 (2019) 109486. https://www.ncbi.nlm.nih.gov/pubmed/31518793/ [11] M. Abdullah Issa, Z.Z. Abidin, S. Sobri, S. Abdul-Rashid, M.A. Mahdi, N.A. Ibrahim, M.Y. Pudza, Fabrication, characterization and response surface method optimization for quantum efficiency of fluorescent nitrogen-doped carbon dots obtained from carboxymethylcellulose of oil palms empty fruit bunch, Chin. J. Chem. Eng. 28 (2) (2020) 584-592. http://dx.doi.org/10.1016/j.cjche.2019.04.003 [12] S. Sharma, V. Dutta, P. Singh, P. Raizada, A. Rahmani-Sani, A. Hosseini-Bandegharaei, V.K. Thakur, Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water:A review, J. Clean. Prod. 228 (2019) 755-769. http://dx.doi.org/10.1016/j.jclepro.2019.04.292 [13] W.L. Shi, J.B. Wang, S. Yang, X. Lin, F. Guo, J.Y. Shi, Fabrication of a ternary carbon dots/CoO/g-C 3 N4 nanocomposite photocatalyst with enhanced visible-light-driven photocatalytic hydrogen production, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2129-2138. https://doi.org/10.1002/jctb.6398 [14] W.L. Shi, S. Yang, H.R. Sun, J.B. Wang, X. Lin, F. Guo, J.Y. Shi, Carbon dots anchored high-crystalline g-C3N4 as a metal-free composite photocatalyst for boosted photocatalytic degradation of tetracycline under visible light, J. Mater. Sci. 56 (3) (2021) 2226-2240. http://dx.doi.org/10.1007/s10853-020-05436-2 [15] Y.N. Liu, C. Liu, C.L. Shi, W. Sun, X. Lin, W.L. Shi, Y.Z. Hong, Carbon-based quantum dots (QDs) modified ms/tz-BiVO4 heterojunction with enhanced photocatalytic performance for water purification, J. Alloy. Compd. 881 (2021) 160437. http://dx.doi.org/10.1016/j.jallcom.2021.160437 [16] F. Guo, H.R. Sun, L. Cheng, W.L. Shi, Oxygen-defective ZnO porous nanosheets modified by carbon dots to improve their visible-light photocatalytic activity and gain mechanistic insight, New J. Chem. 44 (26) (2020) 11215-11223. https://doi.org/10.1039/d0nj02268c [17] F. Guo, X.L. Huang, Z.H. Chen, H.R. Sun, W.L. Shi, Investigation of visible-light-driven photocatalytic tetracycline degradation via carbon dots modified porous ZnSnO3 cubes:Mechanism and degradation pathway, Sep. Purif. Technol. 253 (2020) 117518. http://dx.doi.org/10.1016/j.seppur.2020.117518 [18] W.L. Shi, F. Guo, M.Y. Li, Y. Shi, Y.B. Tang, N-doped carbon dots/CdS hybrid photocatalyst that responds to visible/near-infrared light irradiation for enhanced photocatalytic hydrogen production, Sep. Purif. Technol. 212 (2019) 142-149. http://dx.doi.org/10.1016/j.seppur.2018.11.028 [19] Z.W. Heng, W.C. Chong, Y.L. Pang, L.C. Sim, Photocatalytic degradation of methylene blue under visible light using carbon dot/titanium dioxide nanohybrid, IOP Conf. Ser.:Mater. Sci. Eng. 991 (2020) 012092. https://doi.org/10.1088/1757-899x/991/1/012092 [20] V. Wongso, H.K. Chung, N.S. Sambudi, S. Sufian, B. Abdullah, M.D.H. Wirzal, W.L. Ang, Silica-carbon quantum dots decorated titanium dioxide as sunlight-driven photocatalyst to diminish acetaminophen from aquatic environment, J. Photochem. Photobiol. A:Chem. 394 (2020) 112436. http://dx.doi.org/10.1016/j.jphotochem.2020.112436 [21] A. Tyagi, K.M. Tripathi, N. Singh, S. Choudhary, R.K. Gupta, Green synthesis of carbon quantum dots from lemon peel waste:Applications in sensing and photocatalysis, RSC Adv. 6 (76) (2016) 72423-72432. https://doi.org/10.1039/c6ra10488f [22] R. Atchudan, T.N.J.I. Edison, S. Perumal, R. Vinodh, Y.R. Lee, In-situ green synthesis of nitrogen-doped carbon dots for bioimaging and TiO2 nanoparticles@nitrogen-doped carbon composite for photocatalytic degradation of organic pollutants, J. Alloy. Compd. 766 (2018) 12-24. http://dx.doi.org/10.1016/j.jallcom.2018.06.272 [23] L.C. Sim, J.L. Wong, C.H. Hak, J.Y. Tai, K.H. Leong, P. Saravanan, Sugarcane juice derived carbon dot-graphitic carbon nitride composites for bisphenol A degradation under sunlight irradiation, Beilstein J Nanotechnol 9 (2018) 353-363. https://www.ncbi.nlm.nih.gov/pubmed/29515949/ [24] Z.Q. Zhu, P. Yang, X.H. Li, M. Luo, W. Zhang, M.Z. Chen, X.Y. Zhou, Green preparation of palm powder-derived carbon dots co-doped with sulfur/chlorine and their application in visible-light photocatalysis, Spectrochim Acta A Mol Biomol Spectrosc 227 (2020) 117659. https://www.ncbi.nlm.nih.gov/pubmed/31703996/ [25] U. Abd Rani, L.Y. Ng, C.Y. Ng, E. Mahmoudi, N.H.H. Hairom, Photocatalytic degradation of crystal violet dye using sulphur-doped carbon quantum dots, Mater. Today:Proc. 46 (2021) 1934-1939. http://dx.doi.org/10.1016/j.matpr.2021.02.225 [26] L. Xu, X. Bai, L.K. Guo, S.J. Yang, P.K. Jin, L. Yang, Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2-x nanocomposite for the efficient photoreduction of Cr(VI) under visible light, Chem. Eng. J. 357 (2019) 473-486. http://dx.doi.org/10.1016/j.cej.2018.09.172 [27] R. Miao, Z. Luo, W. Zhong, S.Y. Chen, T. Jiang, B. Dutta, Y. Nasr, Y.S. Zhang, S.L. Suib, Mesoporous TiO2 modified with carbon quantum dots as a high-performance visible light photocatalyst, Appl. Catal. B:Environ. 189 (2016) 26-38. http://dx.doi.org/10.1016/j.apcatb.2016.01.070 [28] D. Choi, S. Ham, D.J. Jang, Visible-light photocatalytic reduction of Cr(VI) via carbon quantum dots-decorated TiO2 nanocomposites, J. Environ. Chem. Eng. 6 (1) (2018) 1-8. http://dx.doi.org/10.1016/j.jece.2017.11.065 [29] C.R. Xue, D. Li, Y.S. Li, N. Li, F. Zhang, Y.Z. Wang, Q. Chang, S.L. Hu, 3D-carbon dots decorated black TiO2 nanotube Array@Ti foam with enhanced photothermal and photocatalytic activities, Ceram. Int. 45 (14) (2019) 17512-17520. http://dx.doi.org/10.1016/j.ceramint.2019.05.313 [30] Y.Q. Zhang, D.K. Ma, Y.G. Zhang, W. Chen, S.M. Huang, N-doped carbon quantum dots for TiO2-based photocatalysts and dye-sensitized solar cells, Nano Energy 2 (5) (2013) 545-552. http://dx.doi.org/10.1016/j.nanoen.2013.07.010 [31] R.D. Liu, H. Li, L.B. Duan, H. Shen, Y.Y. Zhang, X.R. Zhao, In situ synthesis and enhanced visible light photocatalytic activity of C-TiO2 microspheres/carbon quantum dots, Ceram. Int. 43 (12) (2017) 8648-8654. http://dx.doi.org/10.1016/j.ceramint.2017.03.184 [32] M.S. Kumar, K.Y. Yasoda, D. Kumaresan, N.K. Kothurkar, S.K. Batabyal, TiO2-carbon quantum dots (CQD) nanohybrid:Enhanced photocatalytic activity, Mater. Res. Express 5 (7) (2018) 075502. https://doi.org/10.1088/2053-1591/aacbb9 [33] Pal T, Mohiyuddin S, Packirisamy G, Facile and green synthesis of multicolor fluorescence carbon dots from curcumin:In vitro and in vivo bioimaging and other applications, ACS Omega 3 (1) (2018) 831-843. https://www.ncbi.nlm.nih.gov/pubmed/30023790/ [34] P.S. Saud, B. Pant, A.M. Alam, Z.K. Ghouri, M. Park, H.Y. Kim, Carbon quantum dots anchored TiO2 nanofibers:Effective photocatalyst for waste water treatment, Ceram. Int. 41 (9) (2015) 11953-11959. http://dx.doi.org/10.1016/j.ceramint.2015.06.007 [35] M. Pirsaheb, A. Asadi, M. Sillanpää, N. Farhadian, Application of carbon quantum dots to increase the activity of conventional photocatalysts:A systematic review, J. Mol. Liq. 271 (2018) 857-871. http://dx.doi.org/10.1016/j.molliq.2018.09.064 [36] D. Hazarika, N. Karak, Photocatalytic degradation of organic contaminants under solar light using carbon dot/titanium dioxide nanohybrid, obtained through a facile approach, Appl. Surf. Sci. 376 (2016) 276-285. http://dx.doi.org/10.1016/j.apsusc.2016.03.165 [37] N.C.T. Martins, J. Ângelo, A.V. Girão, T. Trindade, L. Andrade, A. Mendes, N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity, Appl. Catal. B:Environ. 193 (2016) 67-74. http://dx.doi.org/10.1016/j.apcatb.2016.04.016 [38] J. Zhang, X.Y. Zhang, S.S. Dong, X. Zhou, S.S. Dong, N-doped carbon quantum dots/TiO2 hybrid composites with enhanced visible light driven photocatalytic activity toward dye wastewater degradation and mechanism insight, J. Photochem. Photobiol. A:Chem. 325 (2016) 104-110. http://dx.doi.org/10.1016/j.jphotochem.2016.04.012 [39] D.D. Ni, Q.K. Shang, T.T. Guo, X.Y. Wang, Y.M. Wu, H.Y. Guan, D. Wang, M. Zhang, An effective strategy to improve dynamic and cyclic stability of HQC/TiO2 photocatalyst by introducing carbon quantum dots or iron ion via metal-complex, Appl. Catal. B:Environ. 210 (2017) 504-512. http://dx.doi.org/10.1016/j.apcatb.2017.04.019 [40] J.J. Zhang, M. Kuang, J. Wang, R.R. Liu, S. Xie, Z.J. Ji, Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light, Chem. Phys. Lett. 730 (2019) 391-398. http://dx.doi.org/10.1016/j.cplett.2019.06.011 [41] Z.W. Heng, W.C. Chong, Y.L. Pang, L.C. Sim, C.H. Koo, Novel visible-light responsive NCQDs-TiO2/PAA/PES photocatalytic membrane with enhanced antifouling properties and self-cleaning performance, J. Environ. Chem. Eng. 9 (4) (2021) 105388. http://dx.doi.org/10.1016/j.jece.2021.105388 [42] Z.Y. Guo, Q. Wang, T. Shen, X.J. Hou, J.L. Kuang, W.X. Liu, W.B. Cao, Synthesis of 3D CQDs/urchin-like and yolk-shell TiO2 hierarchical structure with enhanced photocatalytic properties, Ceram. Int. 45 (5) (2019) 5858-5865. http://dx.doi.org/10.1016/j.ceramint.2018.12.052 [43] W. Wang, Y.R. Ni, Z.Z. Xu, One-step uniformly hybrid carbon quantum dots with high-reactive TiO2 for photocatalytic application, J. Alloy. Compd. 622 (2015) 303-308. http://dx.doi.org/10.1016/j.jallcom.2014.10.076 [44] F.L. Wang, Y.L. Wu, Y.F. Wang, J.H. Li, X.Y. Jin, Q.X. Zhang, R.B. Li, S.C. Yan, H.J. Liu, Y.P. Feng, G.G. Liu, W. Lv, Construction of novel Z-scheme nitrogen-doped carbon dots/{0 0 1} TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation:Mechanism insight, products and effects of natural water matrices, Chem. Eng. J. 356 (2019) 857-868. http://dx.doi.org/10.1016/j.cej.2018.09.092 [45] F.L. Wang, Y.L. Wu, Y.F. Wang, J.H. Li, X.Y. Jin, Q.X. Zhang, R.B. Li, S.C. Yan, H.J. Liu, Y.P. Feng, G.G. Liu, W. Lv, Construction of novel Z-scheme nitrogen-doped carbon dots/{0 0 1} TiO2 nanosheet photocatalysts for broad-spectrum-driven diclofenac degradation:Mechanism insight, products and effects of natural water matrices, Chem. Eng. J. 356 (2019) 857-868. http://dx.doi.org/10.1016/j.cej.2018.09.092 [46] J. Tian, Y.H. Leng, Z.H. Zhao, Y. Xia, Y.H. Sang, P. Hao, J. Zhan, M.C. Li, H. Liu, Carbon quantum dots/hydrogenated TiO2 nanobelt heterostructures and their broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation, Nano Energy 11 (2015) 419-427. http://dx.doi.org/10.1016/j.nanoen.2014.10.025 [47] A. Mehta, A. Mishra, S. Kainth, S.M. Basu, Carbon quantum dots/TiO2 nanocomposite for sensing of toxic metals and photodetoxification of dyes with kill waste by waste concept, Mater. Des. 155 (2018) 485-493. http://dx.doi.org/10.1016/j.matdes.2018.06.015 [48] K. Bukhari, N. Ahmad, I. Sheikh, T. Akram, Effects of different parameters on photocatalytic oxidation of slaughterhouse wastewater using TiO2 and silver-doped TiO2 nanoparticles, Pol. J. Environ. Stud. 28 (3) (2019) 1591-1600. https://doi.org/10.15244/pjoes/90635 [49] F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles, Sci. Rep. 8 (1) (2018) 1-9. http://dx.doi.org/10.1038/s41598-018-25673-5 [50] S.K. Kansal, N. Kaur, S. Singh, Photocatalytic degradation of two commercial reactive dyes in aqueous phase using nanophotocatalysts, Nanoscale Res. Lett. 4 (7) (2009) 709-716. http://dx.doi.org/10.1007/s11671-009-9300-3 [51] B. Ghasemi, B. Anvaripour, S. Jorfi, N. Jaafarzadeh, Enhanced photocatalytic degradation and mineralization of furfural using UVC/TiO2/GAC composite in aqueous solution, Int. J. Photoenergy 2016 (2016) 1-10. https://doi.org/10.1155/2016/2782607 [52] K.M. Reza, A. Kurny, F. Gulshan, Parameters affecting the photocatalytic degradation of dyes using TiO2:a review, Appl. Water Sci. 7 (4) (2017) 1569-1578. http://dx.doi.org/10.1007/s13201-015-0367-y [53] A. Gnanaprakasam, V.M. Sivakumar, M. Thirumarimurugan, Influencing parameters in the photocatalytic degradation of organic effluent via nanometal oxide catalyst:a review, Indian J. Mater. Sci. 2015 (2015) 1-16. https://doi.org/10.1155/2015/601827 [54] R. Beranek, (photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials, Adv. Phys. Chem. 2011 (2011) 1-20. https://doi.org/10.1155/2011/786759 [55] C.L. Yu, G. Li, S. Kumar, H. Kawasaki, R.C. Jin, Stable Au25(SR)18/TiO2 composite nanostructure with enhanced visible light photocatalytic activity, J. Phys. Chem. Lett. 4 (17) (2013) 2847-2852. https://doi.org/10.1021/jz401447w [56] X.Y. Yue, X.L. Miao, Z.Y. Ji, X.P. Shen, H. Zhou, L.R. Kong, G.X. Zhu, X.Y. Li, S. Ali Shah, Nitrogen-doped carbon dots modified dibismuth tetraoxide microrods:a direct Z-scheme photocatalyst with excellent visible-light photocatalytic performance, J Colloid Interface Sci 531 (2018) 473-482. https://www.ncbi.nlm.nih.gov/pubmed/30055442/ [57] J.H. Zhang, J.C. Liu, X.Y. Wang, J.J. Mai, W. Zhao, Z.X. Ding, Y.X. Fang, Construction of Z-scheme tungsten trioxide nanosheets-nitrogen-doped carbon dots composites for the enhanced photothermal synergistic catalytic oxidation of cyclohexane, Appl. Catal. B:Environ. 259 (2019) 118063. http://dx.doi.org/10.1016/j.apcatb.2019.118063 [58] M.T. Genc, G. Yanalak, G. Arslan, I.H. Patir, Green preparation of Carbon Quantum dots using Gingko biloba to sensitize TiO2 for the photohydrogen production, Mater. Sci. Semicond. Process. 109 (2020) 104945. http://dx.doi.org/10.1016/j.mssp.2020.104945 [59] I. Sargin, G. Yanalak, G. Arslan, I.H. Patir, Green synthesized carbon quantum dots as TiO2 sensitizers for photocatalytic hydrogen evolution, Int. J. Hydrog. Energy 44 (39) (2019) 21781-21789. http://dx.doi.org/10.1016/j.ijhydene.2019.06.168 |