中国化学工程学报 ›› 2023, Vol. 53 ›› Issue (1): 142-154.DOI: 10.1016/j.cjche.2022.03.009
Monique Juna L. Leite1, Ingrid Ramalho Marques2, Mariane Carolina Proner1, Pedro H.H. Araújo2, Alan Ambrosi1, Marco Di Luccio1
收稿日期:
2021-09-27
修回日期:
2022-03-10
出版日期:
2023-01-28
发布日期:
2023-04-08
通讯作者:
Marco Di Luccio,E-mail:di.luccio@ufsc.br
基金资助:
Monique Juna L. Leite1, Ingrid Ramalho Marques2, Mariane Carolina Proner1, Pedro H.H. Araújo2, Alan Ambrosi1, Marco Di Luccio1
Received:
2021-09-27
Revised:
2022-03-10
Online:
2023-01-28
Published:
2023-04-08
Contact:
Marco Di Luccio,E-mail:di.luccio@ufsc.br
Supported by:
摘要: Esterification is an important process in the food industry and can be carried out via homogeneous or heterogeneous catalysis. The homogeneous catalyst, despite providing high conversion, can cause corrosion in reactors, which is not observed with the use of heterogeneous catalysts. However, some of these catalysts require a high process temperature and may lose their catalytic activity with reuse. Thus, catalytic membranes have been proposed as a promising alternative. The combination of catalysis and separation in a single module provides greater conversion, reduction of excess reagents, compact industrial plant, making the process more efficient. Within this context, this work aims to present a literature review on the catalytic membrane for the synthesis of esters, improving the understanding of the production and development. This review examines the materials, catalysts used, and synthetic pathways. A comparison between the methods, as well as limitations and gaps in the literature, are highlighted.
Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. 中国化学工程学报, 2023, 53(1): 142-154.
Monique Juna L. Leite, Ingrid Ramalho Marques, Mariane Carolina Proner, Pedro H.H. Araújo, Alan Ambrosi, Marco Di Luccio. Catalytically active membranes for esterification: A review[J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 142-154.
[1] Y.K. Ong, G.M. Shi, N.L. le, Y.P. Tang, J. Zuo, S.P. Nunes, T.S. Chung, Recent membrane development for pervaporation processes, Prog. Polym. Sci. 57 (2016) 1–31. [2] S.L. Wee, C.T. Tye, S. Bhatia, Membrane separation process—Pervaporation through zeolite membrane, Sep. Purif. Technol. 63 (3) (2008) 500–516. [3] F. Lipnizki, R.W. Field, P.K. Ten, Pervaporation-based hybrid process: A review of process design, applications and economics, J. Membr. Sci. 153 (2) (1999) 183–210. [4] R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance and selectivity: A preferred way of reporting pervaporation performance data, J. Membr. Sci. 348 (1–2) (2010) 346–352. [5] B.K. Dutta, W.C. Ji, S.K. Sikdar, Pervaporation: Principles and applications, Sep. Purif. Methods 25 (2) (1996) 131–224. [6] X.X. Cheng, F.S. Pan, M.R. Wang, W.D. Li, Y.M. Song, G.H. Liu, H. Yang, B.X. Gao, H. Wu, Z.Y. Jiang, Hybrid membranes for pervaporation separations, J. Membr. Sci. 541 (2017) 329–346. [7] W. Zhang, Y.X. Xu, Z.J. Yu, S. Lu, X.P. Wang, Separation of acetic acid/water mixtures by pervaporation with composite membranes of sodium alginate active layer and microporous polypropylene substrate, J. Membr. Sci. 451 (2014) 135–147. [8] Q. Liu, Y.K. Li, Q.Q. Li, G.Z. Liu, G.P. Liu, W.Q. Jin, Mixed-matrix hollow fiber composite membranes comprising of PEBA and MOF for pervaporation separation of ethanol/water mixtures, Sep. Purif. Technol. 214 (2019) 2–10. [9] W.Y. Tang, H. Lou, Y.F. Li, X.B. Kong, Y.H. Wu, X.H. Gu, Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions, J. Membr. Sci. 581 (2019) 93–104. [10] J. Wang, M.S. Li, S.Y. Zhou, A.L. Xue, Y. Zhang, Y.J. Zhao, J. Zhong, Q. Zhang, Graphitic carbon nitride nanosheets embedded in poly(vinyl alcohol) nanocomposite membranes for ethanol dehydration via pervaporation, Sep. Purif. Technol. 188 (2017) 24–37. [11] S. Moulik, V. Bukke, S.C. Sajja, S. S, Chitosan-polytetrafluoroethylene composite membranes for separation of methanol and toluene by pervaporation, Carbohydr. Polym. 193 (2018) 28–38. [12] Y.Q. Dong, H.B. Guo, Z.X. Su, W.J. Wei, X.Q. Wu, Pervaporation separation of benzene/cyclohexane through AAOM-ionic liquids/polyurethane membranes, Chem. Eng. Process. Process. Intensif. 89 (2015) 62–69. [13] S. Han, Y.W. Li, S.T. Bai, L. Zhang, W.X. Li, W.H. Xing, Development of stable and active PVA-PSSA/SA-PVA catalytic composite membrane for esterification enhancement, J. Appl. Polym. Sci. 135 (30) (2018) 46514. [14] F.U. Nigiz, A comparative study on the synthesis of ethyl propionate in a pervaporation membrane reactor, Chem. Eng. Process. Process. Intensif. 128 (2018) 173–179. [15] M.H. Zhu, Z.J. Feng, X.M. Hua, H.L. Hu, S.L. Xia, N. Hu, Z. Yang, I. Kumakiri, X.S. Chen, H. Kita, Application of a mordenite membrane to the esterification of acetic acid and alcohol using sulfuric acid catalyst, Microporous Mesoporous Mater. 233 (2016) 171–176. [16] Y.W. Li, S. Han, L. Zhang, W.X. Li, W.H. Xing, Fabrication and modeling of catalytic membrane for removing water in esterification, J. Membr. Sci. 579 (2019) 120–130. [17] S.T. Bo, L. Zhang, S. Han, Y.W. Li, W.X. Li, W.H. Xing, Fabrication of bilayer catalytic composite membrane PVA-SA/SPVA and application for ethyl acetate synthesis, J. Membr. Sci. 563 (2018) 10–21. [18] W.P. Silvestre, C. Baldasso, I.C. Tessaro, Potential of chitosan-based membranes for the separation of essential oil components by target-organophilic pervaporation, Carbohydr. Polym. 247 (2020) 116676. [19] B. Hassankhan, A. Raisi, Separation of isobutanol/water mixtures by hybrid distillation–pervaporation process: Modeling, simulation and economic comparison, Chem. Eng. Process. Process. Intensif. 155 (2020) 108071. [20] W.H. Qing, J.Q. Wu, N. Chen, L.L. Liu, Y.J. Deng, W.D. Zhang, A genuine in situ water removal at a molecular lever by an enhanced esterification–pervaporation coupling in a catalytically active membrane reactor, Chem. Eng. J. 323 (2017) 434–443. [21] Z.Q. Cao, C.J. Xia, W. Jia, W.H. Qing, W.D. Zhang, Enhancing bioethanol productivity by a yeast-immobilized catalytically active membrane in a fermentation–pervaporation coupling process, J. Membr. Sci. 595 (2020) 117485. [22] Q.G. Zhang, Q.L. Liu, A.M. Zhu, Y. Xiong, L. Ren, Pervaporation performance of quaternized poly(vinyl alcohol) and its crosslinked membranes for the dehydration of ethanol, J. Membr. Sci. 335 (1–2) (2009) 68–75. [23] H. Abdallah, A review on catalytic membranes production and applications, Bull. Chem. React. Eng. Catal. 12 (2) (2017) 136. [24] W.H. Qing, X.H. Li, S.L. Shao, X.N. Shi, J.Q. Wang, Y. Feng, W. Zhang, W.D. Zhang, Polymeric catalytically active membranes for reaction–separation coupling: A review, J. Membr. Sci. 583 (2019) 118–138. [25] Reports and Data, Aroma ingredients market by type of fragrance (floral, fruity, savory), by chemical compounds (esters, terpenes, alcohols), by type (natural ingredients, synthetic ingredients), by applications (cosmetics & toiletries, foods & drinks), and segment forecas, September, 2019[2020-06-18]. [26] A.G.A. SÁ, A.C. de Meneses, P.H.H. de Araújo, D. de Oliveira, A review on enzymatic synthesis of aromatic esters used as flavor ingredients for food, cosmetics and pharmaceuticals industries, Trends Food Sci. Technol. 69 (2017) 95–105. [27] G.N. Pereira, J.P. Holz, P.P. Giovannini, J.V. Oliveira, D. de Oliveira, L.A. Lerin, Enzymatic esterification for the synthesis of butyl stearate and ethyl stearate, Biocatal. Agric. Biotechnol. 16 (2018) 373–377. [28] Z. Jin, J. Ntwali, S.Y. Han, S.P. Zheng, Y. Lin, Production of flavor esters catalyzed by CALB-displaying Pichia pastoris whole-cells in a batch reactor, J. Biotechnol. 159 (1–2) (2012) 108–114. [29] C.R. Khudsange, K.L. Wasewar, Process intensification of esterification reaction for the production of propyl butyrate by pervaporation, Resour. Effic. Technol. 3 (1) (2017) 88–93. [30] Y. Zhong, Q. Deng, P.X. Zhang, J. Wang, R. Wang, Z.L. Zeng, S.G. Deng, Sulfonic acid functionalized hydrophobic mesoporous biochar: Design, preparation and acid-catalytic properties, Fuel 240 (2019) 270–277. [31] V.S. Chandane, A.P. Rathod, K.L. Wasewar, Coupling of in situ pervaporation for the enhanced esterification of propionic acid with isobutyl alcohol over cenosphere based catalyst, Chem. Eng. Process. Process. Intensif. 119 (2017) 16–24. [32] M.N.B. Mohiddin, Y.H. Tan, Y.X. Seow, J. Kansedo, N.M. Mubarak, M.O. Abdullah, Y.S. Chan, M. Khalid, Evaluation on feedstock, technologies, catalyst and reactor for sustainable biodiesel production: A review, J. Ind. Eng. Chem. 98 (2021) 60–81. [33] P. Prinsen, R. Luque, C. González-Arellano, Zeolite catalyzed palmitic acid esterification, Microporous Mesoporous Mater. 262 (2018) 133–139. [34] Z.T. Alismaeel, A.S. Abbas, T.M. Albayati, A.M. Doyle, Biodiesel from batch and continuous oleic acid esterification using zeolite catalysts, Fuel 234 (2018) 170–176. [35] S.D. Le, S. Nishimura, K. Ebitani, Direct esterification of succinic acid with phenol using zeolite beta catalyst, Catal. Commun. 122 (2019) 20–23. [36] A. Patel, V. Brahmkhatri, N. Singh, Biodiesel production by esterification of free fatty acid over sulfated zirconia, Renew. Energy 51 (2013) 227–233. [37] D. Rattanaphra, A.P. Harvey, A. Thanapimmetha, P. Srinophakun, Kinetic of myristic acid esterification with methanol in the presence of triglycerides over sulfated zirconia, Renew. Energy 36 (10) (2011) 2679–2686. [38] Q.H. Yang, Z.H. Ma, J.Z. Ma, J. Nie, Mesoporous silica supported water-stable perfluorobutylsulfonylimide and its catalytic applications in esterification, Microporous Mesoporous Mater. 172 (2013) 51–60. [39] I.K. Mbaraka, D.R. Radu, V.S.Y. Lin, B.H. Shanks, Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid, J. Catal. 219 (2) (2003) 329–336. [40] S. Korkmaz, Y. Salt, A. Hasanoglu, S. Ozkan, I. Salt, S. Dincer, Pervaporation membrane reactor study for the esterification of acetic acid and isobutanol using polydimethylsiloxane membrane, Appl. Catal. A Gen. 366 (1) (2009) 102–107. [41] C. Cannilla, G. Bonura, F. Costa, F. Frusteri, Biofuels production by esterification of oleic acid with ethanol using a membrane assisted reactor in vapour permeation configuration, Appl. Catal. A Gen. 566 (2018) 121–129. [42] S. Khajavi, J.C. Jansen, F. Kapteijn, Application of a sodalite membrane reactor in esterification—Coupling reaction and separation, Catal. Today 156 (3–4) (2010) 132–139. [43] A. Hasanoğlu, Y. Salt, S. Keleşer, S. Dinçer, The esterification of acetic acid with ethanol in a pervaporation membrane reactor, Desalination 245 (1–3) (2009) 662–669. [44] R.M.A. Saboya, J.A. Cecilia, C. García-Sancho, A.V. Sales, F.M.T. de Luna, E. Rodríguez-Castellón, C.L. Cavalcante Jr, Synthesis of biolubricants by the esterification of free fatty acids from castor oil with branched alcohols using cationic exchange resins as catalysts, Ind. Crops Prod. 104 (2017) 52–61. [45] N.R.M. Sturt, S.S. Vieira, F.C.C. Moura, Catalytic activity of sulfated niobium oxide for oleic acid esterification, J. Environ. Chem. Eng. 7 (1) (2019) 102866. [46] M. Zare, M.T. Golmakani, M. Niakousari, Lipase synthesis of isoamyl acetate using different acyl donors: Comparison of novel esterification techniques, LWT 101 (2019) 214–219. [47] A.C. de Meneses, A.G. Almeida Sá, L.A. Lerin, M.L. Corazza, P.H.H. de Araújo, C. Sayer, D. de Oliveira, Benzyl butyrate esterification mediated by immobilized lipases: Evaluation of batch and fed-batch reactors to overcome lipase-acid deactivation, Process. Biochem. 78 (2019) 50–57. [48] S.H.Y.S. Abdullah, N.H.M. Hanapi, A. Azid, R. Umar, H. Juahir, H. Khatoon, A. Endut, A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production, Renew. Sustain. Energy Rev. 70 (2017) 1040–1051. [49] L.L. Ma, E.M. Lv, L.X. Du, Y. Han, J. Lu, J.C. Ding, A flow-through tubular catalytic membrane reactor using zirconium sulfate tetrahydrate-impregnated carbon membranes for acidified oil esterification, J. Energy Inst. 90 (6) (2017) 875–883. [50] S. Assabumrungrat, J. Phongpatthanapanich, P. Praserthdam, T. Tagawa, S. Goto, Theoretical study on the synthesis of methyl acetate from methanol and acetic acid in pervaporation membrane reactors: Effect of continuous-flow modes, Chem. Eng. J. 95 (1–3) (2003) 57–65. [51] R.Z. Wang, G.Z. Chen, H. Qin, H.Y. Cheng, L.F. Chen, Z.W. Qi, Systematic screening of bifunctional ionic liquid for intensifying esterification of methyl heptanoate in the reactive extraction process, Chem. Eng. Sci. 246 (2021) 116888. [52] R. Castro-Muñoz, Pervaporation: The emerging technique for extracting aroma compounds from food systems, J. Food Eng. 253 (2019) 27–39. [53] A. Khalid, M. Aslam, M.A. Qyyum, A. Faisal, A.L. Khan, F. Ahmed, M. Lee, J. Kim, N. Jang, I.S. Chang, A.A. Bazmi, M. Yasin, Membrane separation processes for dehydration of bioethanol from fermentation broths: Recent developments, challenges, and prospects, Renew. Sustain. Energy Rev. 105 (2019) 427–443. [54] Z. Findrik, G. Németh, Đ. Vasić-Rački, K. Bélafi-Bakó, Z. Csanádi, L. Gubicza, Pervaporation-aided enzymatic esterifications in non-conventional media, Process. Biochem. 47 (12) (2012) 1715–1722. [55] J.H. Chen, J.Z. Zheng, Q.L. Liu, H.X. Guo, W. Weng, S.X. Li, Pervaporation dehydration of acetic acid using polyelectrolytes complex (PEC)/11-phosphotungstic acid hydrate (PW11) hybrid membrane (PEC/PW11), J. Membr. Sci. 429 (2013) 206–213. [56] Q.G. Zhang, Q.L. Liu, Z.Y. Jiang, Y. Chen, Anti-trade-off in dehydration of ethanol by novel PVA/APTEOS hybrid membranes, J. Membr. Sci. 287 (2) (2007) 237–245. [57] K. Sunitha, S.V. Satyanarayana, S. Sridhar, Phosphorylated chitosan membranes for the separation of ethanol–water mixtures by pervaporation, Carbohydr. Polym. 87 (2) (2012) 1569–1574. [58] P.D. Chapman, T. Oliveira, A.G. Livingston, K. Li, Membranes for the dehydration of solvents by pervaporation, J. Membr. Sci. 318 (1–2) (2008) 5–37. [59] X.S. Feng, R.Y.M. Huang, Liquid separation by membrane pervaporation: A review, Ind. Eng. Chem. Res. 36 (4) (1997) 1048–1066. [60] G. Jyoti, A. Keshav, J. Anandkumar, Review on pervaporation: Theory, membrane performance, and application to intensification of esterification reaction, J. Eng. 2015 (2015) 927068. [61] H. Kita, S. Sasaki, K. Tanaka, K.I. Okamoto, M. Yamamoto, Esterification of carboxylic acid with ethanol accompanied by pervaporation, Chem. Lett. 17 (12) (1988) 2025–2028. [62] M.T. Sanz, J. Gmehling, Esterification of acetic acid with isopropanol coupled with pervaporation, Chem. Eng. J. 123 (1–2) (2006) 1–8. [63] P. Delgado, M.T. Sanz, S. Beltrán, L.A. Núñez, Ethyl lactate production via esterification of lactic acid with ethanol combined with pervaporation, Chem. Eng. J. 165 (2) (2010) 693–700. [64] E. Ameri, A. Moheb, S. Roodpeyma, Vapor-permeation-aided esterification of isopropanol/propionic acid using NaA and PERVAP® 2201 membranes, Chem. Eng. J. 162 (1) (2010) 355–363. [65] S. Korkmaz, Y. Salt, S. Dincer, Esterification of acetic acid and isobutanol in a pervaporation membrane reactor using different membranes, Ind. Eng. Chem. Res. 50 (20) (2011) 11657–11666. [66] L.L. Ma, Y. Han, K.A. Sun, J. Lu, J.C. Ding, Optimization of acidified oil esterification catalyzed by sulfonated cation exchange resin using response surface methodology, Energy Convers. Manag. 98 (2015) 46–53. [67] V.S. Chandane, A.P. Rathod, K.L. Wasewar, Enhancement of esterification conversion using pervaporation membrane reactor, Resour. Effic. Technol. 2 (2016) S47–S52. [68] A. Shameli, E. Ameri, Synthesis of cross-linked PVA membranes embedded with multi-wall carbon nanotubes and their application to esterification of acetic acid with methanol, Chem. Eng. J. 309 (2017) 381–396. [69] S.H. Shuit, S.H. Tan, Esterification of palm fatty acid distillate with methanol via single-step pervaporation membrane reactor: A novel biodiesel production method, Energy Convers. Manag. 201 (2019) 112110. [70] L. Zhang, Y.W. Li, Q. Liu, W.X. Li, W.H. Xing, Fabrication of ionic liquids-functionalized PVA catalytic composite membranes to enhance esterification by pervaporation, J. Membr. Sci. 584 (2019) 268–281. [71] W.D. Zhang, W.H. Qing, N. Chen, Z.Q. Ren, J.R. Chen, W. Sun, Enhancement of esterification conversion using novel composite catalytically active pervaporation membranes, J. Membr. Sci. 451 (2014) 285–292. [72] F. Ugur Nigiz, Comparative study on use of pervaporation membrane reactor for lauric acid —Methanol esterification, Sep. Purif. Technol. 264 (2021) 118443. [73] Z.Q. Jia, G.R. Wu, Metal–organic frameworks based mixed matrix membranes for pervaporation, Microporous Mesoporous Mater. 235 (2016) 151–159. [74] B. van der Bruggen, P. Luis, Pervaporation as a tool in chemical engineering: A new era? Curr. Opin. Chem. Eng. 4 (2014) 47–53. [75] F.U. Nigiz, N.D. Hilmioglu, Simultaneous separation performance of a catalytic membrane reactor for ethyl lactate production by using boric acid coated carboxymethyl cellulose membrane, React. Kinetics Mech. Catal. 118 (2) (2016) 557–575. [76] M.O. David, Q.T. Nguyen, J. Néel, Pervaporation membranes endowed with catalytic properties, based on polymer blends, J. Membr. Sci. 73 (2–3) (1992) 129–141. [77] R. Kancherla, S. Nazia, S. Kalyani, S. Sridhar, Modeling and simulation for design and analysis of membrane-based separation processes, Comput. Chem. Eng. 148 (2021) 107258. [78] Q.L. Liu, H.F. Chen, Modeling of esterification of acetic acid with n-butanol in the presence of Zr(SO4)2·4H2O coupled pervaporation, J. Membr. Sci. 196 (2) (2002) 171–178. [79] T.F. Ceia, A.G. Silva, C.S. Ribeiro, J.V. Pinto, M.H. Casimiro, A.M. Ramos, J. Vital, PVA composite catalytic membranes for hyacinth flavour synthesis in a pervaporation membrane reactor, Catal. Today 236 (2014) 98–107. [80] P. Shao, R.Y.M. Huang, Polymeric membrane pervaporation, J. Membr. Sci. 287 (2) (2007) 162–179. [81] V.S. Praptowidodo, Influence of swelling on water transport through PVA-based membrane, J. Mol. Struct. 739 (1–3) (2005) 207–212. [82] S.M. Ghaseminezhad, M. Barikani, M. Salehirad, Development of graphene oxide-cellulose acetate nanocomposite reverse osmosis membrane for seawater desalination, Compos. B Eng. 161 (2019) 320–327. [83] M.A. Zulfikar, A.W. Mohammad, A.A. Kadhum, N. Hilal, Synthesis and characterization of poly(methyl methacrylate)/SiO2 hybrid membrane, Mater. Sci. Eng. A 452-453 (2007) 422–426. [84] F.U. Nigiz, H. Dogan, N.D. Hilmioglu, Pervaporation of ethanol/water mixtures using clinoptilolite and 4A filled sodium alginate membranes, Desalination 300 (2012) 24–31. [85] A.V. Penkova, S.F.A. Acquah, M.E. Dmitrenko, M.P. Sokolova, M.E. Mikhailova, E.S. Polyakov, S.S. Ermakov, D.A. Markelov, D. Roizard, Improvement of pervaporation PVA membranes by the controlled incorporation of fullerenol nanoparticles, Mater. Des. 96 (2016) 416–423. [86] Y.S. Zhu, H.F. Chen, Pervaporation separation and pervaporation–esterification coupling using crosslinked PVA composite catalytic membranes on porous ceramic plate, J. Membr. Sci. 138 (1) (1998) 123–134. [87] S.G. Adoor, L.S. Manjeshwar, S.D. Bhat, T.M. Aminabhavi, Aluminum-rich zeolite beta incorporated sodium alginate mixed matrix membranes for pervaporation dehydration and esterification of ethanol and acetic acid, J. Membr. Sci. 318 (1–2) (2008) 233–246. [88] G. Yang, Z.L. Xie, M. Cran, D. Ng, S. Gray, Enhanced desalination performance of poly (vinyl alcohol)/carbon nanotube composite pervaporation membranes via interfacial engineering, J. Membr. Sci. 579 (2019) 40–51. [89] Y.K. Lin, V.H. Nguyen, J.C.C. Yu, C.W. Lee, Y.H. Deng, J.C.S. Wu, K.C.W. Wu, K.L. Tung, C.L. Chen, Biodiesel production by pervaporation-assisted esterification and pre-esterification using graphene oxide/chitosan composite membranes, J. Taiwan Inst. Chem. Eng. 79 (2017) 23–30. [90] Z.L. Xie, M. Hoang, D. Ng, C. Doherty, A. Hill, S. Gray, Effect of heat treatment on pervaporation separation of aqueous salt solution using hybrid PVA/MA/TEOS membrane, Sep. Purif. Technol. 127 (2014) 10–17. [91] L.Y. Wang, J.D. Li, Y.Z. Lin, C.X. Chen, Separation of dimethyl carbonate/methanol mixtures by pervaporation with poly(acrylic acid)/poly(vinyl alcohol) blend membranes, J. Membr. Sci. 305 (1–2) (2007) 238–246. [92] M.S. Jyothi, K.R. Reddy, K. Soontarapa, S. Naveen, A.V. Raghu, R.V. Kulkarni, D.P. Suhas, N.P. Shetti, M.N. Nadagouda, T.M. Aminabhavi, Membranes for dehydration of alcohols via pervaporation, J. Environ. Manage. 242 (2019) 415–429. [93] G. Odian, Types of polymers and polymerizations, In: Principles of Polymerization (4th ed.), John Wiley & Sons, New Jersey, 2004. [94] K.W. Böddeker, Terminology in pervaporation, J. Membr. Sci. 51 (3) (1990) 259–272. [95] H.H. Nijhuis, M.H.V. Mulder, C.A. Smolders, Selection of elastomeric membranes for the removal of volatile organics from water, J. Appl. Polym. Sci. 47 (12) (1993) 2227–2243. [96] Y. Yampolskii, Polymeric gas separation membranes, Macromolecules 45 (8) (2012) 3298–3311. [97] W.D. Zhang, W.H. Qing, Z.Q. Ren, W. Li, J.R. Chen, Lipase immobilized catalytically active membrane for synthesis of lauryl stearate in a pervaporation membrane reactor, Bioresour. Technol. 172 (2014) 16–21. [98] D. Unlu, N.D. Hilmioglu, Pervaporation catalytic membrane reactor application over functional chitosan membrane, J. Membr. Sci. 559 (2018) 138–147. [99] R. Castro-Muñoz, Ó. de la Iglesia, V. Fíla, C. Téllez, J. Coronas, Pervaporation-assisted esterification reactions by means of mixed matrix membranes, Ind. Eng. Chem. Res. 57 (47) (2018) 15998–16011. [100] P. Kumar, V. Bansal, K.H. Kim, E.E. Kwon, Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment, J. Ind. Eng. Chem. 62 (2018) 130–145. [101] H.S. Sun, de Sun, X.M. Shi, B.B. Li, D.M. Yue, R. Xiao, P. Ren, J.H. Zhang, PVA/SO42--AAO difunctional catalytic-pervaporation membranes: Preparation and characterization, Sep. Purif. Technol. 241 (2020) 116739. [102] D. Unlu, N.D. Hilmioglu, Pervaporation catalytic membrane reactor study for the production of ethyl acetate using Zr(SO4)2·4H2O coated chitosan membrane, J. Chem. Technol. Biotechnol. 91 (1) (2016) 122–130. [103] X.H. Ma, X. Wen, S.W. Gu, Z.L. Xu, J.L. Zhang, Preparation and characterization of catalytic TiO2-SPPESK-PES nanocomposite membranes and kinetics analysis in esterification, J. Membr. Sci. 430 (2013) 62–69. [104] S. Sorribas, A. Kudasheva, E. Almendro, B. Zornoza, Ó. de la Iglesia, C. Téllez, J. Coronas, Pervaporation and membrane reactor performance of polyimide based mixed matrix membranes containing MOF HKUST-1, Chem. Eng. Sci. 124 (2015) 37–44. [105] Ó. de la Iglesia, S. Sorribas, E. Almendro, B. Zornoza, C. Téllez, J. Coronas, Metal–organic framework MIL-101(Cr) based mixed matrix membranes for esterification of ethanol and acetic acid in a membrane reactor, Renew. Energy 88 (2016) 12–19. [106] D. Bastani, N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, J. Ind. Eng. Chem. 19 (2) (2013) 375–393. [107] G.X. Dong, H.Y. Li, V. Chen, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A 1 (15) (2013) 4610. [108] V.S. Chandane, A.P. Rathod, K.L. Wasewar, Pervaporation-assisted esterification of caproic acid with isobutanol in conventional, in situ, and ex situ reactors, Chem. Eng. Technol. 42 (5) (2019) 1002–1010. [109] Y.W. Li, L. Zhang, W.X. Li, W.H. Xing, Optimization of dual-functional membrane and application for esterification enhancement, Chem. Eng. Process. Process.Intensif. 139 (2019) 103–112. [110] M. Pang, S.T. Jiang, H.J. Zheng, Synthesis of phytosterol esters of oleic acid by catalysis of Zr(SO4)2·4H2O under solvent-free condition, Adv. Mater. Res. 236-238 (2011) 2510–2515. [111] R.L. Guo, X. Fang, H. Wu, Z.Y. Jiang, Preparation and pervaporation performance of surface crosslinked PVA/PES composite membrane, J. Membr. Sci. 322 (1) (2008) 32–38. [112] M. Saraswathi, K.M. Rao, M.N. Prabhakar, C.V. Prasad, K. Sudakar, H.M.P.N. Kumar, M. Prasad, K.C. Rao, M.C.S. Subha, Pervaporation studies of sodium alginate (SA)/dextrin blend membranes for separation of water and isopropanol mixture, Desalination 269 (1–3) (2011) 177–183. [113] B.X. Gao, Z.Y. Jiang, C.H. Zhao, H. Gomaa, F.S. Pan, Enhanced pervaporative performance of hybrid membranes containing Fe3O4@CNT nanofillers, J. Membr. Sci. 492 (2015) 230–241. [114] S.V. Kononova, A.V. Volod'ko, V.A. Petrova, E.V. Kruchinina, Y.G. Baklagina, E.A. Chusovitin, Y.A. Skorik, Pervaporation multilayer membranes based on a polyelectrolyte complex of λ-carrageenan and chitosan, Carbohydr. Polym. 181 (2018) 86–92. [115] D. Achari, P. Rachipudi, S. Naik, R. Karuppannan, M. Kariduraganavar, Polyelectrolyte complex membranes made of chitosan—PSSAMA for pervaporation separation of industrially important azeotropic mixtures, J. Ind. Eng. Chem. 78 (2019) 383–395. [116] Q. Zhao, Q.F. An, Y.L. Ji, J.W. Qian, C.J. Gao, Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications, J. Membr. Sci. 379 (1–2) (2011) 19–45. [117] A. El-Gendi, H. Abdallah, A. Amin, S.K. Amin, Investigation of polyvinylchloride and cellulose acetate blend membranes for desalination, J. Mol. Struct. 1146 (2017) 14–22. [118] E.T. Saw, K.L. Ang, W. He, X.C. Dong, S. Ramakrishna, Molecular sieve ceramic pervaporation membranes in solvent recovery: A comprehensive review, J. Environ. Chem. Eng. 7 (5) (2019) 103367. [119] L.M. Vane, Review: membrane materials for the removal of water from industrial solvents by pervaporation and vapor permeation, J. Chem. Technol. Biotechnol. 94 (2) (2019) 343–365. [120] W.X. Li, W.W. Liu, W.H. Xing, N.P. Xu, Esterification of acetic acid and n-propanol with vapor permeation using NaA zeolite membrane, Ind. Eng. Chem. Res. 52 (19) (2013) 6336–6342. [121] S. Khajavi, F. Kapteijn, J.C. Jansen, Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation, J. Membr. Sci. 299 (1–2) (2007) 63–72. [122] K. Tanaka, R. Yoshikawa, C. Ying, H. Kita, K.I. Okamoto, Application of zeolite membranes to esterification reactions, Catal. Today 67 (1–3) (2001) 121–125. [123] W. Xu, J.W. Xu, L.J. Gao, G.M. Xiao, Preparation and characterization of inorganic acid catalytic membrane for biodiesel production from oleic acid, Asia Pac.J. Chem. Eng. 10 (6) (2015) 851–857. [124] R.W. van Gemert, F.P. Cuperus, Newly developed ceramic membranes for dehydration and separation of organic mixtures by pervaporation, J. Membr. Sci. 105 (3) (1995) 287–291. [125] G. Dudek, M. Krasowska, R. Turczyn, A. Strzelewicz, D. Djurado, S. Pouget, Clustering analysis for pervaporation performance assessment of alginate hybrid membranes in dehydration of ethanol, Chem. Eng. Res. Des. 144 (2019) 483–493. [126] Y.Y. Gu, C. Emin, J.C. Remigy, I. Favier, M. Gómez, R.D. Noble, D.L. Gin, J. Macanás, B. Domènech, J.F. Lahitte, Hybrid catalytic membranes: Tunable and versatile materials for fine chemistry applications, Mater. Today Proc. 3 (2) (2016) 419–423. [127] T.A. Peters, N.E. Benes, J.T.F. Keurentjes, Preparation of Amberlyst-coated pervaporation membranes and their application in the esterification of acetic acid and butanol, Appl. Catal. A Gen. 317 (1) (2007) 113–119. [128] P.P. Lu, Z.L. Xu, X.H. Ma, Y. Cao, Preparation and characterization of perfluorosulfonic acid nanofiber membranes for pervaporation-assisted esterification, Ind. Eng. Chem. Res. 52 (24) (2013) 8149–8156. [129] W.Y. Shi, M.X. Yang, H.B. Li, R. Zhou, H.X. Zhang, Preparation and characterization of sulfonated poly (ether sulfone) (SPES)/phosphotungstic acid (PWA) hybrid membranes for biodiesel production, Catal. Lett. 145 (8) (2015) 1581–1590. [130] H.L. Zhang, X. Luo, K.Q. Shi, T. Wu, F. He, H.Q. Yang, S.S. Zhang, C. Peng, Nanocarbon-based catalysts for esterification: Effect of carbon dimensionality and synergistic effect of the surface functional groups, Carbon 147 (2019) 134–145. [131] W.Y. Shi, H.B. Li, R. Zhou, X.H. Qin, H.X. Zhang, Y.H. Su, Q.Y. Du, Preparation and characterization of phosphotungstic acid/PVA nanofiber composite catalytic membranes via electrospinning for biodiesel production, Fuel 180 (2016) 759–766. [132] M.S. Li, W. Zhang, S.Y. Zhou, Y.J. Zhao, Preparation of poly (vinyl alcohol)/palygorskite-poly (ionic liquids) hybrid catalytic membranes to facilitate esterification, Sep. Purif. Technol.230 (2020) 115746. [133] A.H. van Pelt, O.A. Simakova, S.M. Schimming, J.L. Ewbank, G.S. Foo, E.A. Pidko, E.J.M. Hensen, C. Sievers, Stability of functionalized activated carbon in hot liquid water, Carbon 77 (2014) 143–154. [134] F. Ugur Nigiz, N. Durmaz Hilmioglu, A study on composite catalytic membrane manufacturing based on sodium alginate and lipase to be used in a pervaporation reactor, Res. Chem. Intermed. 43 (2) (2017) 1149–1163. [135] M.L. Zhu, B.Q. He, W.Y. Shi, Y.H. Feng, J.C. Ding, J.X. Li, F.D. Zeng, Preparation and characterization of PSSA/PVA catalytic membrane for biodiesel production, Fuel 89 (9) (2010) 2299–2304. [136] S.H. Ali, A. Tarakmah, S.Q. Merchant, T. Al-Sahhaf, Synthesis of esters: Development of the rate expression for the Dowex 50 Wx8-400 catalyzed esterification of propionic acid with 1-propanol, Chem. Eng. Sci. 62 (12) (2007) 3197–3217. [137] H. Li, P.S. Bhadury, B.A. Song, S. Yang, Immobilized functional ionic liquids: Efficient, green, and reusable catalysts, RSC Adv. 2 (33) (2012) 12525. [138] Y. Leng, J. Wang, D.R. Zhu, X.Q. Ren, H.Q. Ge, L. Shen, Heteropolyanion-based ionic liquids: Reaction-induced self-separation catalysts for esterification, Angew. Chem.Int. Ed. 48 (1) (2009) 168–171. [139] D. Lu, J.W. Zhao, Y. Leng, P.P. Jiang, C.J. Zhang, Novel porous and hydrophobic POSS-ionic liquid polymeric hybrid as highly efficient solid acid catalyst for synthesis of oleate, Catal. Commun. 83 (2016) 27–30. [140] Z.W. Wu, C. Chen, Q.R. Guo, B.X. Li, Y.G. Que, L. Wang, H. Wan, G.F. Guan, Novel approach for preparation of poly (ionic liquid) catalyst with macroporous structure for biodiesel production, Fuel 184 (2016) 128–135. [141] W.H. Qing, J.Q. Wu, Y.J. Deng, L.L. Liu, W.D. Zhang, A novel catalytically active membrane with highly porous catalytic layer for the conversion enhancement of esterification: Focusing on the reduction of mass transfer resistance of the catalytic layer, J. Membr. Sci. 539 (2017) 359–367. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||