[1] B. Schäffner, F. Schäffner, S.P. Verevkin, A. Börner, Organic carbonates as solvents in synthesis and catalysis, Chem. Rev. 110 (8) (2010) 4554–4581. https://pubmed.ncbi.nlm.nih.gov/20345182/ [2] J.H. Clements, Reactive applications of cyclic alkylene carbonates, Ind. Eng. Chem. Res. 42 (4) (2003) 663–674. https://doi.org/10.1021/ie020678i [3] S.N. Banitaba, D. Semnani, E. Heydari-Soureshjani, B. Rezaei, A.A. Ensafi, The effect of concentration and ratio of ethylene carbonate and propylene carbonate plasticizers on characteristics of the electrospun PEO-based electrolytes applicable in lithium-ion batteries, Solid State Ion. 347 (2020) 115252. http://dx.doi.org/10.1016/j.ssi.2020.115252 [4] R. Abdul-Karim, A. Hameed, M.I. Malik, Ring-opening polymerization of ethylene carbonate: Comprehensive structural elucidation by 1D & 2D-NMR techniques, and selectivity analysis, RSC Adv. 7 (19) (2017) 11786–11795. https://doi.org/10.1039/c7ra01113j [5] M.I. Zaretskii, V.V. Rusak, E.M. Chartov, Ethylene carbonate in extraction and absorption: A review, Coke Chem. 54 (4) (2011) 120–122. https://doi.org/10.3103/s1068364x11040077 [6] S.P. Low, A. Ahmad, M.Y.A. Rahman, Effect of ethylene carbonate plasticizer and TiO2 nanoparticles on 49% poly(methyl methacrylate) grafted natural rubber-based polymer electrolyte, Ionics 16 (9) (2010) 821–826. http://dx.doi.org/10.1007/s11581-010-0470-x [7] E.S. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, F. Wu, Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects, Chem. Rev. 120 (14) (2020) 7020–7063. https://pubmed.ncbi.nlm.nih.gov/31990183/ [8] Q. Li, Z. Cao, W. Wahyudi, G. Liu, G.T. Park, L. Cavallo, T. Anthopoulos, L.M. Wang, Y.K. Sun, H. Alshareef, Unraveling the new role of an ethylene carbonate solvation shell in rechargeable metal ion batteries, ACS Energy Lett. 6 (1) (2020) 69–78. http://dx.doi.org/10.1021/acsenergylett.0c02140 [9] L. Xing, X. Zheng, M. Schroeder, J. Alvarado, A. von Wald Cresce, K. Xu, Q. Li, W. Li, Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries, Acc. Chem. Res. 51 (2) (2018) 282–289. https://pubmed.ncbi.nlm.nih.gov/29381050/ [10] W. Yu, E. Maynard, V. Chiaradia, M.C. Arno, A.P. Dove, Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials, Chem. Rev. 121 (18) (2021) 10865–10907. https://pubmed.ncbi.nlm.nih.gov/33591164/ [11] Market Stand Market, Market Research Reports for Ethylene Carbonate. https://www.marketsandmarkets.com/Market-Reports/ethylene-carbonate-market-229766138.html, 2021 (accessed 08 October 2021). [12] W.J. Peppel, Preparation and properties of the alkylene carbonates, Ind. Eng. Chem. 50 (5) (1958) 767–770. https://doi.org/10.1021/ie50581a030 [13] A. Dani, E. Groppo, C. Barolo, J.G. Vitillo, S. Bordiga, Design of high surface area poly(ionic liquid)s to convert carbon dioxide into ethylene carbonate, J. Mater. Chem. A 3 (16) (2015) 8508–8518. https://doi.org/10.1039/c5ta00272a [14] D. Fakhrnasova, R.J. Chimentão, F. Medina, A. Urakawa, Rational and statistical approaches in enhancing the yield of ethylene carbonate in urea transesterification with ethylene glycol over metal oxides, ACS Catal. 5 (11) (2015) 6284–6295. https://doi.org/10.1021/acscatal.5b01575 [15] S.E. Lyubimov, A.A. Zvinchuk, M.V. Sokolovskaya, V.A. Davankov, B. Chowdhury, P.V. Zhemchugov, A.V. Arzumanyan, A simple synthesis of ethylene carbonate from carbon dioxide and 2-chloroethanol using silica gel as a catalyst, Appl. Catal. A Gen. 592 (2020) 117433. http://dx.doi.org/10.1016/j.apcata.2020.117433 [16] Q. Wei, G. Zhang, J. Yao, X.J. Chen, G.Y. Wang, X.G. Yang, One-step bulk fabrication of a CaO/carbon heterogeneous catalyst from calcium citrate for rapid synthesis of dimethyl carbonate (DMC) by transesterification of ethylene carbonate (EC), New J. Chem. 45 (12) (2021) 5540–5550. https://doi.org/10.1039/d0nj06144a [17] P. Kumar, R. Kaur, S. Verma, V.C. Srivastava, I.M. Mishra, The preparation and efficacy of SrO/CeO2 catalysts for the production of dimethyl carbonate by transesterification of ethylene carbonate, Fuel 220 (2018) 706–716. http://dx.doi.org/10.1016/j.fuel.2018.01.137 [18] Alibaba Trding Website, Market Price of Searching for Ethylene Carbonate. https://www.alibaba.com/trade/search?fsb=y&IndexArea=product_en&CatId=&SearchText=ethylene+carbonate, 2021 (accessed 08 October 2021). [19] J.F. Pang, M.Y. Zheng, R.Y. Sun, L. Song, A.Q. Wang, X.D. Wang, T. Zhang, Catalytic conversion of cellulosic biomass to ethylene glycol: Effects of inorganic impurities in biomass, Bioresour. Technol. 175 (2015) 424–429. http://dx.doi.org/10.1016/j.biortech.2014.10.076 [20] S.T. Yu, X.C. Cao, S.W. Liu, L. Li, Q. Wu, Production of ethylene glycol from direct catalytic conversion of cellulose over a binary catalyst of metal-loaded modified SBA-15 and phosphotungstic acid, RSC Adv. 8 (44) (2018) 24857–24865. https://doi.org/10.1039/c8ra03806f [21] L.S. Ribeiro, J.J. de Melo Órfão, M.F.R. Pereira, Direct catalytic conversion of agro-forestry biomass wastes into ethylene glycol over CNT supported Ru and W catalysts, Ind. Crops Prod. 166 (2021) 113461. http://dx.doi.org/10.1016/j.indcrop.2021.113461 [22] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO 2, Science 345 (6196) (2014) 546–550. https://doi.org/10.1126/science.1253057 [23] J.C. Choi, L.N. He, H. Yasuda, T. Sakakura, Selective and high yield synthesis of dimethyl carbonate directly from carbon dioxide and methanol, Green Chem. 4 (3) (2002) 230–234. https://doi.org/10.1039/b200623p [24] Babad H, Zeiler AG. Chemistry of phosgene. Chemical reviews, 1973, 73(1): 75-91. [25] J. Xu, K.Z. Long, T. Chen, B. Xue, Y.X. Li, Y. Cao, Mesostructured graphitic carbon nitride as a new base catalyst for the efficient synthesis of dimethyl carbonate by transesterification, Catal. Sci. Technol. 3 (12) (2013) 3192. https://doi.org/10.1039/c3cy00517h [26] J.Q. Wang, J. Sun, W.G. Cheng, C.Y. Shi, K. Dong, X.P. Zhang, S.J. Zhang, Synthesis of dimethyl carbonate catalyzed by carboxylic functionalized imidazolium salt via transesterification reaction, Catal. Sci. Technol. 2 (3) (2012) 600–605. https://doi.org/10.1039/c1cy00342a [27] B.A.V. Santos, V.M.T.M. Silva, J.M. Loureiro, A.E. Rodrigues, Review for the direct synthesis of dimethyl carbonate, Chembioeng Rev. 1 (5) (2014) 214–229. http://dx.doi.org/10.1002/cben.201400020 [28] M.J. Schneider, M. Haumann, M. Stricker, J. Sundermeyer, P. Wasserscheid, Gas-phase oxycarbonylation of methanol for the synthesis of dimethyl carbonate using copper-based Supported Ionic Liquid Phase (SILP) catalysts, J. Catal. 309 (2014) 71–78. http://dx.doi.org/10.1016/j.jcat.2013.08.029 [29] H.Z. Tan, Z.Q. Wang, Z.N. Xu, J. Sun, Z.N. Chen, Q.S. Chen, Y.M. Chen, G.C. Guo, Active Pd(ii) complexes: Enhancing catalytic activity by ligand effect for carbonylation of methyl nitrite to dimethyl carbonate, Catal. Sci. Technol. 7 (17) (2017) 3785–3790. https://doi.org/10.1039/c7cy01305a [30] H. Itoh, Y. Watanabe, K.J. Mori, H. Umino, Synthesis of dimethyl carbonate by vapor phase oxidative carbonylation of methanol, Green Chem. 5 (5) (2003) 558–562. https://doi.org/10.1039/b304618b [31] J.F. Knifton, R.G. Duranleau, Ethylene glycol—dimethyl carbonate cogeneration, J. Mol. Catal. 67 (3) (1991) 389–399. http://dx.doi.org/10.1016/0304-5102(91)80051-4 [32] P. Unnikrishnan, D. Srinivas, Highly active and reusable ternary oxide catalyst for dialkyl carbonates synthesis, J. Mol. Catal. A Chem. 398 (2015) 42–49. http://dx.doi.org/10.1016/j.molcata.2014.11.022 [33] G. Stoica, S. Abelló, J. Pérez-Ramírez, Na-dawsonite derived aluminates for DMC production by transesterification of ethylene carbonate, Appl. Catal. A Gen. 365 (2) (2009) 252–260. http://dx.doi.org/10.1016/j.apcata.2009.06.022 [34] Y.L. Gan, X.Q. Hu, L.Z. Wen, J. Xu, B. Xue, Metal-free synthesis of dimethyl carbonateviatransesterification of ethylene carbonate catalyzed by graphitic carbon nitride materials, New J. Chem. 44 (8) (2020) 3215–3223. https://doi.org/10.1039/c9nj04530a [35] X.D. Wang, P. Hong, A.A. Kiss, Q.L. Wang, L. Li, H.X. Wang, T. Qiu, From batch to continuous sustainable production of 3-methyl-3-penten-2-one for synthetic ketone fragrances, ACS SUSTAINABLE CHEMISTRY ENGINEERING 8 (46) (2020) 17201–17214. http://dx.doi.org/10.1021/ACSSUSCHEMENG.0C05908 [36] X.D. Wang, H.X. Wang, J.Y. Chen, W.Y. Zheng, T. Qiu, High conversion of methyl acetate hydrolysis in a reactive dividing wall column by weakening the self-catalyzed esterification reaction, Ind. Eng. Chem. Res. 56 (32) (2017) 9177–9187. http://dx.doi.org/10.1021/acs.iecr.7b01907 [37] X.D. Wang, Q.L. Wang, C.S. Ye, X.L. Dong, T. Qiu, Feasibility study of reactive distillation for the production of propylene glycol monomethyl ether acetate through transesterification, Ind. Eng. Chem. Res. 56 (25) (2017) 7149–7159. http://dx.doi.org/10.1021/acs.iecr.7b01462 [38] W.C. Wang, L. Li, X.D. Wang, T. Qiu, J.H. Yang, C.S. Ye, Reaction kinetic studies on the immobilized-lipase catalyzed enzymatic resolution of 1-phenylethanol transesterification with ethyl butyrate, Biocatal. Biotransformation 39 (1) (2021) 29–40. http://dx.doi.org/10.1080/10242422.2020.1855150 [39] L. Li, P. Hong, A.A. Kiss, H. Tian, X.D. Wang, T. Qiu, Unraveling the reaction route and kinetics of 3-methyl-3-penten-2-one synthesis for synthetic ketone fragrances, J. Chem. Technol. Biotechnol. 96 (1) (2021) 48–63. http://dx.doi.org/10.1002/jctb.6543 [40] X.D. Wang, W.K. Li, S.W. Wang, Q.L. Wang, L. Li, H.X. Wang, T. Qiu, Reaction kinetics for the heterogeneously resin-catalyzed and homogeneously self-catalyzed esterification of thioglycolic acid with 2-ethyl-1-hexanol, Chin. J. Chem. Eng. 36 (2021) 111–119. http://dx.doi.org/10.1016/j.cjche.2020.08.052 [41] Y.J. Fang, W.D. Xiao, Experimental and modeling studies on a homogeneous reactive distillation system for dimethyl carbonate synthesis by transesterification, Sep. Purif. Technol. 34 (1–3) (2004) 255–263. http://dx.doi.org/10.1016/S1383-5866(03)00198-9 [42] J. Deng, J.S. Zhang, K. Wang, G.S. Luo, Microreaction technology for synthetic chemistry, Chin. J. Chem. 37 (2) (2019) 161–170. http://dx.doi.org/10.1002/cjoc.201800428 [43] Jahnisch K, Hessel V, Lowe H, Baerns M. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004, 43(4): 406–446. [44] H. Schönfeld, K. Hunger, R. Cecilia, U. Kunz, Enhanced mass transfer using a novel polymer/carrier microreactor, Chem. Eng. J. 101 (1–3) (2004) 455–463. http://dx.doi.org/10.1016/j.cej.2004.01.009 [45] G. Dummann, U. Quittmann, L. Gröschel, D.W. Agar, O. Wörz, K. Morgenschweis, The capillary-microreactor: A new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions, Catal. Today 79-80 (2003) 433–439. http://dx.doi.org/10.1016/S0920-5861(03)00056-7 [46] Y.C. Zhao, G.W. Chen, Q. Yuan, Liquid-liquid two-phase mass transfer in the T-junction microchannels, Aiche J. 53 (12) (2007) 3042–3053. http://dx.doi.org/10.1002/aic.11333 [47] Q.L. Xu, H.C. Fan, H.M. Yao, D.H. Wang, H.W. Yu, B.B. Chen, Z.Q. Yu, W.K. Su, Understanding monoacylation of symmetrical diamines: A kinetic study of acylation reaction of m-phenylenediamine and benzoic anhydride in microreactor, Chem. Eng. J. 398 (2020) 125584. http://dx.doi.org/10.1016/j.cej.2020.125584 [48] S.Z. Hu, A.J. Wang, H. Löwe, X. Li, Y. Wang, C.H. Li, D. Yang, Kinetic study of ionic liquid synthesis in a microchannel reactor, Chem. Eng. J. 162 (1) (2010) 350–354. http://dx.doi.org/10.1016/j.cej.2010.04.063 [49] A. Ładosz, C. Kuhnle, K.F. Jensen, Characterization of reaction enthalpy and kinetics in a microscale flow platform, React. Chem. Eng. 5 (11) (2020) 2115–2122. https://doi.org/10.1039/d0re00304b [50] P.J. Wang, K. Wang, J.S. Zhang, G.S. Luo, Kinetic study of reactions of aniline and benzoyl chloride in a microstructured chemical system, AIChE J. 61 (11) (2015) 3804–3811. https://doi.org/10.1002/aic.14891 [51] X.D. Wang, X. Xu, Q.L. Wang, Z.X. Huang, J.Y. He, T. Qiu, Fatty acid methyl ester synthesis through transesterification of palm oil with methanol in microchannels: Flow pattern and reaction kinetics, Energy Fuels 34 (3) (2020) 3628–3639. http://dx.doi.org/10.1021/acs.energyfuels.9b03365 [52] K. Wang, Y.C. Lu, Y. Xia, H.W. Shao, G.S. Luo, Kinetics research on fast exothermic reaction between cyclohexanecarboxylic acid and oleum in microreactor, Chem. Eng. J. 169 (1–3) (2011) 290–298. http://dx.doi.org/10.1016/j.cej.2011.02.072 [53] H.S. Santana, D.S. Tortola, É.M. Reis, J.L. Silva Jr, O.P. Taranto, Transesterification reaction of sunflower oil and ethanol for biodiesel synthesis in microchannel reactor: Experimental and simulation studies, Chem. Eng. J. 302 (2016) 752–762. http://dx.doi.org/10.1016/j.cej.2016.05.122 [54] G. Charles, T. Roques-Carmes, N. Becheikh, L. Falk, J.M. Commenge, S. Corbel, Determination of kinetic constants of a photocatalytic reaction in micro-channel reactors in the presence of mass-transfer limitation and axial dispersion, J. Photochem. Photobiol. A Chem. 223 (2–3) (2011) 202–211. http://dx.doi.org/10.1016/j.jphotochem.2011.08.019 [55] S. Corbel, N. Becheikh, T. Roques-Carmes, O. Zahraa, Mass transfer measurements and modeling in a microchannel photocatalytic reactor, Chem. Eng. Res. Des. 92 (4) (2014) 657–662. http://dx.doi.org/10.1016/j.cherd.2013.10.011 [56] Y.Y. He, H.G. Cheng, Z.H. Pan, F.Q. Cheng, Ultrasonic process intensification during the preparation of dimethyl carbonate based on the alcoholysis of ethylene carbonate and the kinetic behavior of dimethyl carbonate, React. Chem. Eng. 6 (11) (2021) 2170–2180. https://doi.org/10.1039/d1re00219h |