[1] R.Y. Dou, H. Cheng, J.F. Ma, Y. Qin, Y. Kong, S. Komarneni, Catalytic degradation of methylene blue through activation of bisulfite with CoO nanoparticles, Sep. Purif. Technol. 239 (2020) 116561. http://dx.doi.org/10.1016/j.seppur.2020.116561 [2] Y. Yin, L. Shi, W.L. Li, X.N. Li, H. Wu, Z.M. Ao, W.J. Tian, S.M. Liu, S.B. Wang, H.Q. Sun, Boosting Fenton-like reactions via single atom Fe catalysis, Environ. Sci. Technol. 53 (19) (2019) 11391–11400. https://pubmed.ncbi.nlm.nih.gov/31436973/ [3] X. Dong, Y.C. Lin, G.L. Ren, Y.Q. Ma, L. Zhao, Catalytic degradation of methylene blue by Fenton-like oxidation of Ce-doped MOF, Colloids Surf. A Physicochem. Eng. Aspects 608 (2021) 125578. http://dx.doi.org/10.1016/j.colsurfa.2020.125578 [4] C. Lai, F.L. Huang, G.M. Zeng, D.L. Huang, L. Qin, M. Cheng, C. Zhang, B.S. Li, H. Yi, S.Y. Liu, L. Li, L. Chen, Fabrication of novel magnetic MnFe2O4/bio-char composite and heterogeneous photo-Fenton degradation of tetracycline in near neutral pH, Chemosphere 224 (2019) 910–921. http://dx.doi.org/10.1016/j.chemosphere.2019.02.193 [5] J.L. Wang, J.T. Tang, Fe-based Fenton-like catalysts for water treatment: catalytic mechanisms and applications, J. Mol. Liq. 332 (2021) 115755. http://dx.doi.org/10.1016/j.molliq.2021.115755 [6] C.Y. Dai, A.F. Zhang, L. Luo, X.B. Zhang, M. Liu, J.H. Wang, X.W. Guo, C.S. Song, Hollow zeolite-encapsulated Fe-Cu bimetallic catalysts for phenol degradation, Catal. Today 297 (2017) 335–343. http://dx.doi.org/10.1016/j.cattod.2017.02.001 [7] J.R. Yang, D.Q. Zeng, Q.G. Zhang, R.F. Cui, M. Hassan, L.Q. Dong, J. Li, Y.L. He, Single Mn atom anchored on N-doped porous carbon as highly efficient Fenton-like catalyst for the degradation of organic contaminants, Appl. Catal. B Environ. 279 (2020) 119363. http://dx.doi.org/10.1016/j.apcatb.2020.119363 [8] J.R. Yang, D.Q. Zeng, J. Li, L.Q. Dong, W.J. Ong, Y.L. He, A highly efficient Fenton-like catalyst based on isolated diatomic Fe-Co anchored on N-doped porous carbon, Chem. Eng. J. 404 (2021) 126376. http://dx.doi.org/10.1016/j.cej.2020.126376 [9] X.H. Wang, Z.D. Nan, Highly efficient Fenton-like catalyst Fe-g-C3N4 porous nanosheets formation and catalytic mechanism, Sep. Purif. Technol. 233 (2020) 116023. http://dx.doi.org/10.1016/j.seppur.2019.116023 [10] P. Shukla, S.B. Wang, H.Q. Sun, H.M. Ang, M. Tadé, Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2, Chem. Eng. J. 164 (1) (2010) 255–260. http://dx.doi.org/10.1016/j.cej.2010.08.061 [11] X.F. Li, X. Liu, L.L. Xu, Y.Z. Wen, J.Q. Ma, Z.C. Wu, Highly dispersed Pd/PdO/Fe2O3 nanoparticles in SBA-15 for Fenton-like processes: confinement and synergistic effects, Appl. Catal. B Environ. 165 (2015) 79–86. http://dx.doi.org/10.1016/j.apcatb.2014.09.071 [12] Y.B. Wang, H.Y. Zhao, G.H. Zhao, Iron-copper bimetallic nanoparticles embedded within ordered mesoporous carbon as effective and stable heterogeneous Fenton catalyst for the degradation of organic contaminants, Appl. Catal. B Environ. 164 (2015) 396–406. http://dx.doi.org/10.1016/j.apcatb.2014.09.047 [13] N. Wang, Q.M. Sun, R.S. Bai, X. Li, G.Q. Guo, J.H. Yu, In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation, J. Am. Chem. Soc. 138 (24) (2016) 7484–7487. https://pubmed.ncbi.nlm.nih.gov/27248462/ [14] Q.M. Sun, N. Wang, Q.Y. Fan, L. Zeng, A. Mayoral, S. Miao, R.O. Yang, Z. Jiang, W. Zhou, J.C. Zhang, T.J. Zhang, J. Xu, P. Zhang, J. Cheng, D.C. Yang, R. Jia, L. Li, Q.H. Zhang, Y. Wang, O. Terasaki, J.H. Yu, Frontispiece: subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation, Angewandte Chemie Int. Ed. 59 (44) (2020) 19450-19459. https://doi.org/10.1002/anie.202084461 [15] Q.M. Sun, N. Wang, Q.M. Bing, R. Si, J.Y. Liu, R.S. Bai, P. Zhang, M.J. Jia, J.H. Yu, Subnanometric hybrid Pd-M(OH)2, M = Ni, co, clusters in zeolites as highly efficient nanocatalysts for hydrogen generation, Chem 3 (3) (2017) 477–493. http://dx.doi.org/10.1016/j.chempr.2017.07.001 [16] J. Zhu, R. Osuga, R. Ishikawa, N. Shibata, Y. Ikuhara, J.N. Kondo, M. Ogura, J.H. Yu, T. Wakihara, Z.D. Liu, T. Okubo, Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: catalytic application for propane dehydrogenation, Angewandte Chemie Int. Ed. 59 (44) (2020) 19669–19674. https://doi.org/10.1002/anie.202007044 [17] Q.M. Sun, N. Wang, T.J. Zhang, R.S. Bai, A. Mayoral, P. Zhang, Q.H. Zhang, O. Terasaki, J.H. Yu, Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes, Angew. Chem. Int. Ed Engl. 58 (51) (2019) 18570–18576. https://pubmed.ncbi.nlm.nih.gov/31657875/ [18] H.J. Cho, D. Kim, J. Li, D. Su, B.J. Xu, Zeolite-encapsulated Pt nanoparticles for tandem catalysis, J. Am. Chem. Soc. 140 (41) (2018) 13514–13520. https://doi.org/10.1021/jacs.8b09568 [19] N. Wang, Q.M. Sun, J.H. Yu, Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts, Adv. Mater. 31 (1) (2019) 1803966. http://dx.doi.org/10.1002/adma.201803966 [20] Z.Y. Jiang, L.Z. Wang, J.Y. Lei, Y.D. Liu, J.L. Zhang, Photo-Fenton degradation of phenol by CdS/rGO/Fe2+ at natural pH with in situ-generated H2O2, Appl. Catal. B Environ. 241 (2019) 367–374. http://dx.doi.org/10.1016/j.apcatb.2018.09.049 [21] D. Chlebda, P. Stachurska, R. Jędrzejczyk, Ł. Kuterasiński, A. Dziedzicka, S. Górecka, L. Chmielarz, J. Łojewska, M. Sitarz, P. Jodłowski, DeNOx abatement over sonically prepared iron-substituted Y, USY and MFI zeolite catalysts in lean exhaust gas conditions, Nanomaterials 8 (1) (2018) 21. https://doi.org/10.3390/nano8010021 [22] A. Hussain, D.W. Sun, H.B. Pu, Bimetallic core shelled nanoparticles (Au@AgNPs) for rapid detection of thiram and dicyandiamide contaminants in liquid milk using SERS, Food Chem. 317 (2020) 126429. https://pubmed.ncbi.nlm.nih.gov/32109658/ [23] K. Bian, A.F. Zhang, H. Yang, B.H. Fan, S.T. Xu, X.W. Guo, C.S. Song, Synthesis and characterization of Fe-substituted ZSM-5 zeolite and its catalytic performance for alkylation of benzene with dilute ethylene, Ind. Eng. Chem. Res. 59 (52) (2020) 22413–22421. https://doi.org/10.1021/acs.iecr.0c01909 [24] J.Y. Wang, G.N. Li, X.H. Ju, H.A. Xia, F.T. Fan, J.H. Wang, Z.C. Feng, C. Li, Identification of Fe2(μ-O) and Fe2(μ-O)2 sites in Fe/ZSM-35 by in situ resonance Raman spectroscopy, J. Catal. 301 (2013) 77–82. http://dx.doi.org/10.1016/j.jcat.2013.01.023 [25] S.L. Deng, X.B. Zhang, G.J. Lv, Y. Zhai, Z.B. Yang, Y.Q. Zhu, H.C. Li, F.M. Wang, Influence of zeolite carriers on the dyes degradation for framework Fe-doped zeolite catalysts, J. Sol Gel Sci. Technol. 91 (1) (2019) 54–62. http://dx.doi.org/10.1007/s10971-019-05030-2 [26] S.J. Song, Y.L. Wang, H. Shen, J. Zhang, H. Mo, J. Xie, N.L. Zhou, J. Shen, Ultrasmall graphene oxide modified with Fe3O4 nanoparticles as a Fenton-like agent for methylene blue degradation, ACS Appl. Nano Mater. 2 (11) (2019) 7074–7084. https://doi.org/10.1021/acsanm.9b01608 [27] X.H. Pan, S.Y. Cheng, T. Su, G.C. Zuo, W. Zhao, X.L. Qi, W. Wei, W. Dong, Fenton-like catalyst Fe3O4@polydopamine-MnO2 for enhancing removal of methylene blue in wastewater, Colloids Surf. B Biointerfaces 181 (2019) 226–233. http://dx.doi.org/10.1016/j.colsurfb.2019.05.048 [28] A. Tolba, M. Gar Alalm, M. Elsamadony, A. Mostafa, H. Afify, D.D. Dionysiou, Modeling and optimization of heterogeneous Fenton-like and photo-Fenton processes using reusable Fe3O4-MWCNTs, Process. Saf. Environ. Prot. 128 (2019) 273–283. http://dx.doi.org/10.1016/j.psep.2019.06.011 [29] B. Ren, J.F. Miao, S.S. Wang, Y.L. Xu, Z.Z. Zhai, X.X. Dong, Z.F. Liu, Facilely synthesized porous 3D coral-like Fe-based N-doped carbon composite as effective Fenton catalyst in methylene blue degradation, Colloids Surf. A Physicochem. Eng. Aspects 618 (2021) 126439. http://dx.doi.org/10.1016/j.colsurfa.2021.126439 [30] T. Zhang, Q.Q. Ma, M.Q. Zhou, C.Y. Li, J.C. Sun, W.J. Shi, S.Y. Ai, Degradation of methylene blue by a heterogeneous Fenton reaction catalyzed by FeCo2O4-N-C nanocomposites derived by ZIFs, Powder Technol. 383 (2021) 212–219. http://dx.doi.org/10.1016/j.powtec.2021.01.051 [31] Q.D. Qin, Y.H. Liu, X.C. Li, T. Sun, Y. Xu, Enhanced heterogeneous Fenton-like degradation of methylene blue by reduced CuFe2O4, RSC Adv. 8 (2) (2018) 1071–1077. https://doi.org/10.1039/c7ra12488k [32] M. Fayazi, M.A. Taher, D. Afzali, A. Mostafavi, Enhanced Fenton-like degradation of methylene blue by magnetically activated carbon/hydrogen peroxide with hydroxylamine as Fenton enhancer, J. Mol. Liq. 216 (2016) 781–787. http://dx.doi.org/10.1016/j.molliq.2016.01.093 |