[1] M.X. Su, H.Y. Wang, C.S. Sun, C.Y. Yuan, L. Chao, W. Qiang, Acute toxicity of intratracheal arsenic trioxide instillation in rat lungs, J. Appl. Toxicol. 39 (11) (2019) 1578–1585.https://pubmed.ncbi.nlm.nih.gov/31319442/ [2] S.U. Dani, G.F. Walter, Chronic arsenic intoxication diagnostic score (CAsIDS), J. Appl. Toxicol. 38 (1) (2018) 122–144.https://pubmed.ncbi.nlm.nih.gov/28857213/ [3] C.B. Wang, H.M. Liu, Y. Zhang, C. Zou, E.J. Anthony, Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies, Prog. Energy Combust. Sci. 68 (2018) 1–28. 10.1016/j.pecs.2018.04.001 [4] X. Xie, C. Chen, N. Zhang, Z.R. Tang, J. Jiang, Y.J. Xu, Microstructure and surface control of MXene films for water purification“>, Nat. Sustain. 2”> (9“>) (2019) 856”>–862“>.https://www.nature.com/articles/s41893-019-0373-4%22%3e [5] C.L. Hou, T.F. Jiao, R.R. Xing, Y. Chen, J.X. Zhou, L.X. Zhang, Preparation of TiO2 nanoparticles modified electrospun nanocomposite membranes toward efficient dye degradation for wastewater treatment, J. Taiwan Inst. Chem. Eng. 78 (2017) 118–126.10.1016/j.jtice.2017.04.033 [6] N. Najib, C. Christodoulatos, Removal of arsenic using functionalized cellulose nanofibrils from aqueous solutions, J. Hazard. Mater. 367 (2019) 256–266.https://pubmed.ncbi.nlm.nih.gov/30594725/ [7] N.R. Nicomel, K. Leus, K. Folens, P. van der Voort, G. du Laing, Technologies for arsenic removal from water: Current status and future perspectives, Int J Environ Res Public Health 13 (1) (2015) ijerph13010062.https://pubmed.ncbi.nlm.nih.gov/26703687/ [8] Y.R. He, Y.P. Tang, D.C. Ma, T.S. Chung, UiO-66 incorporated thin-film nanocomposite membranes for efficient selenium and arsenic removal, J. Membr. Sci. 541 (2017) 262–270.10.1016/j.memsci.2017.06.061 [9] Kabay N, Ipek IY, Yilmaz PK, Samatya S, Bryjak M, Yoshizuka K, et al. Removal of boron and arsenic from geothermal water by ion-exchange. Geothermal Water Management: CRC Press,Boca Raton (2018)135-155. [10] E.B. da Silva, L.M. de Oliveira, A.C. Wilkie, Y. Liu, L.Q. Ma, Arsenic removal from As-hyperaccumulator Pteris vittata biomass: Coupling extraction with precipitation, Chemosphere 193 (2018) 288–294.https://pubmed.ncbi.nlm.nih.gov/29145089/ [11] R.Z. He, Z.Y. Peng, H.H. Lyu, H. Huang, Q. Nan, J.C. Tang, Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal, Sci. Total Environ. 612 (2018) 1177–1186.https://pubmed.ncbi.nlm.nih.gov/28892862/ [12] L.K. Wu, H. Wu, H.B. Zhang, H.Z. Cao, G.Y. Hou, Y.P. Tang, G.Q. Zheng, Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water, Chem. Eng. J. 334 (2018) 1808–1819.10.1016/j.cej.2017.11.096 [13] N.Y. Zhu, J. Qiao, Y.F. Ye, T.M. Yan, Synthesis of mesoporous bismuth-impregnated aluminum oxide for arsenic removal: Adsorption mechanism study and application to a lab-scale column, J. Environ. Manage. 211 (2018) 73–82.https://pubmed.ncbi.nlm.nih.gov/29408085/ [14] S. Moradian, H. Dezhampanah, J.B. Ghasemi, H. Behnejad, Spectrophotometric-chemometrics study of the effect of solvent composition and temperature on the spectral shape and shift of copper and nickel phthalocyanines in different aqueous-nonaqueous mixed solvents, Spectrochimica Acta A Mol. Biomol. Spectrosc. 227 (2020) 117621.10.1016/j.saa.2019.117621 [15] S. Moradian, J.B. Ghasemi, H. Dezhampanah, Chemometrics-spectroscopic study of the effect of temperature and pre-micellar to post-micellar forms of various surfactants on the dimerization of nickel and copper phthalocyanines, J. Mol. Liq. 300 (2020) 112350.10.1016/j.molliq.2019.112350 [16] L.P. Liang, F.F. Xi, W.S. Tan, X. Meng, B.W. Hu, X.K. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites, Biochar 3 (3) (2021) 255–281.10.1007/s42773-021-00101-6 [17] X.M. Dou, G.C. Wang, M.Q. Zhu, F.D. Liu, W. Li, D. Mohan, C.U. Pittman Jr, Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces, J. Hazard. Mater. 353 (2018) 340–347.https://pubmed.ncbi.nlm.nih.gov/29680692/ [18] J.C. Zhang, Y.N. Chen, W. Zhao, Y.H. Li, Arsenic removal from aqueous solutions by diethylenetriamine-functionalized resin: Isotherm, kinetics, selectivity and mechanism, R. Soc. Open Sci. 5 (9) (2018) 181013.https://pubmed.ncbi.nlm.nih.gov/30839648/ [19] I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: Batch and column operations, J. Mol. Liq. 271 (2018) 677–685.10.1016/j.molliq.2018.09.021 [20] C.L. Fausey, I. Zucker, E. Shaulsky, J.B. Zimmerman, M. Elimelech, Removal of arsenic with reduced graphene oxide-TiO2-enabled nanofibrous mats, Chem. Eng. J. 375 (2019) 122040.10.1016/j.cej.2019.122040 [21] J. Xu, Z. Cao, Y.L. Zhang, Z.L. Yuan, Z.M. Lou, X.H. Xu, X.K. Wang, A review of functionalized carbon nanotubes and graphene for heavy metal adsorption from water: Preparation, application, and mechanism, Chemosphere 195 (2018) 351–364.https://pubmed.ncbi.nlm.nih.gov/29272803/ [22] A.M. Nasir, P.S. Goh, A.F. Ismail, Highly adsorptive polysulfone/hydrous iron-nickel-manganese (PSF/HINM) nanocomposite hollow fiber membrane for synergistic arsenic removal, Sep. Purif. Technol. 213 (2019) 162–175.10.1016/j.seppur.2018.12.040 [23] S. Zhang, J.Q. Wang, Y. Zhang, J.Z. Ma, L. Huang, S.J. Yu, L. Chen, G. Song, M.Q. Qiu, X.X. Wang, Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review, Environ Pollut 291 (2021) 118076.https://pubmed.ncbi.nlm.nih.gov/34534824/ [24] S.J. Yu, H.W. Pang, S.Y. Huang, H. Tang, S.Q. Wang, M.Q. Qiu, Z.S. Chen, H. Yang, G. Song, D. Fu, B.W. Hu, X.X. Wang, Recent advances in metal-organic framework membranes for water treatment: A review, Sci. Total Environ. 800 (2021) 149662.https://pubmed.ncbi.nlm.nih.gov/34426309/ [25] V.H. Nguyen, S. Ali Delbari, M. Mousavi, A. Sabahi Namini, J.B. Ghasemi, Q. van le, M. Shahedi Asl, M. Mohammadi, M. Shokouhimehr, G-C3N4-nanosheet/ZnCr2O4 S-scheme heterojunction photocatalyst with enhanced visible-light photocatalytic activity for degradation of phenol and tetracycline, Sep. Purif. Technol. (2021) 118511.10.1016/j.seppur.2021.118511 [26] J.S. He, F. Ni, A.N. Cui, X.L. Chen, S.H. Deng, F. Shen, C.R. Huang, G. Yang, C. Song, J. Zhang, D. Tian, L.L. Long, Y. Zhu, L. Luo, New insight into adsorption and co-adsorption of arsenic and tetracycline using a Y-immobilized graphene oxide-alginate hydrogel: Adsorption behaviours and mechanisms, Sci. Total Environ. 701 (2020) 134363.https://pubmed.ncbi.nlm.nih.gov/31706211/ [27] A.I.A. Sherlala, A.A.A. Raman, M.M. Bello, Synthesis and characterization of magnetic graphene oxide for arsenic removal from aqueous solution, Environ. Technol. 40 (12) (2019) 1508–1516.https://pubmed.ncbi.nlm.nih.gov/29300679/ [28] S.I. Siddiqui, R. Ravi, S.A. Chaudhry, Removal of Arsenic from Water Using Graphene Oxide Nano-hybridsNew Gener. Mater. Graphene Appl. Water Technol. (2019): 221–237.10.1007/978-3-319-75484-0_9 [29] A. Ghazitabar, M. Naderi, D. Fatmehsari Haghshenas, M. Rezaei, Synthesis of N-doped graphene aerogel/Co3O4/ZnO ternary nanocomposite via mild reduction method with an emphasis on its electrochemical characteristics, J. Alloys Compd. 794 (2019) 625–633.10.1016/j.jallcom.2019.04.188 [30] F. Zhang, Y.H. Li, J.Y. Li, Z.R. Tang, Y.J. Xu, 3D graphene-based gel photocatalysts for environmental pollutants degradation, Environ. Pollut. 253 (2019) 365–376.https://pubmed.ncbi.nlm.nih.gov/31325881/ [31] H. Wang, X. Mi, Y. Li, S. Zhan, 3D graphene-based macrostructures for water treatment, Adv. Mater. Deerfield Beach Fla 32 (3) (2020) e1806843.https://pubmed.ncbi.nlm.nih.gov/31074916/ [32] N. Yousefi, X.L. Lu, M. Elimelech, N. Tufenkji, Environmental performance of graphene-based 3D macrostructures, Nat. Nanotechnol. 14 (2) (2019) 107–119.https://pubmed.ncbi.nlm.nih.gov/30617310/ [33] W.J. Ye, X.Y. Li, J.W. Luo, X.Y. Wang, R.C. Sun, Lignin as a green reductant and morphology directing agent in the fabrication of 3D graphene-based composites for high-performance supercapacitors, Ind. Crops Prod. 109 (2017) 410–419.10.1016/j.indcrop.2017.08.047 [34] Q.H. Wu, G.Y. Zhao, C. Feng, C. Wang, Z. Wang, Preparation of a graphene-based magnetic nanocomposite for the extraction of carbamate pesticides from environmental water samples, J. Chromatogr. A 1218 (44) (2011) 7936–7942.https://pubmed.ncbi.nlm.nih.gov/21962496/ [35] X.P. Zhang, D. Liu, L. Yang, L.M. Zhou, T.Y. You, Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis, J. Mater. Chem. A 3 (18) (2015) 10031–10037.https://doi.org/10.1039/c5ta00355e [36] S.H. Park, H.K. Kim, S.B. Yoon, C.W. Lee, D. Ahn, S.I. Lee, K.C. Roh, K.B. Kim, Spray-assisted deep-frying process for the in situ spherical assembly of graphene for energy-storage devices, Chem. Mater. 27 (2) (2015) 457–465.10.1021/cm5034244 [37] H. Wang, J.Y. Xie, H. Almkhelfe, V. Zane, R. Ebini, C.M. Sorensen, P.B. Amama, Microgel-assisted assembly of hierarchical porous reduced graphene oxide for high-performance lithium-ion battery anodes, J. Mater. Chem. A 5 (44) (2017) 23228–23237.https://doi.org/10.1039/c7ta07183c [38] N. Baig, T.A. Saleh, Electrodes modified with 3D graphene composites: A review on methods for preparation, properties and sensing applications, Mikrochim. Acta 185 (6) (2018) 283.https://pubmed.ncbi.nlm.nih.gov/29736826/ [39] H.T. Yu, G.X. Xin, X. Ge, C.K. Bulin, R.H. Li, R.G. Xing, B.W. Zhang, Porous graphene-polyaniline nanoarrays composite with enhanced interface bonding and electrochemical performance, Compos. Sci. Technol. 154 (2018) 76–84.10.1016/j.compscitech.2017.11.010 [40] F. Ghasemi, S. Kimiagar, M. Shahbazi, H. Vojoudi, Removal enhancement of basic blue 41 by rgo–tio2 nanocomposite synthesized using pulsed laser, Surf. Rev. Lett. 25 (1) (2018) 1850041.https://doi.org/10.1142/s0218625x18500415 [41] M. Nazarian-Samani, H.K. Kim, S.H. Park, H.C. Youn, D. Mhamane, S.W. Lee, M.S. Kim, J.H. Jeong, S. Haghighat-Shishavan, K.C. Roh, S.F. Kashani-Bozorg, K.B. Kim, Three-dimensional graphene-based spheres and crumpled balls: Micro- and nano-structures, synthesis strategies, properties and applications, RSC Adv. 6 (56) (2016) 50941–50967.https://doi.org/10.1039/c6ra07485e [42] M. Pedrosa, E.S. da Silva, L.M. Pastrana-Martínez, G. Drazic, P. Falaras, J.L. Faria, J.L. Figueiredo, A. Silva, Hummers' and brodie's graphene oxides as photocatalysts for phenol degradation, J. Colloid Interface Sci. 567 (2020) 243–255.https://pubmed.ncbi.nlm.nih.gov/32062085/ [43] K.Y. Goud, A. Hayat, G. Catanante, S. M, K.V. Gobi, J.L. Marty, An electrochemical aptasensor based on functionalized graphene oxide assisted electrocatalytic signal amplification of methylene blue for aflatoxin B1 detection, Electrochimica Acta 244 (2017) 96–103.10.1016/j.electacta.2017.05.089 [44] Z.Z. Wang, X.Y. Li, Synthesis of CoAl-layered double hydroxide/graphene oxide nanohybrid and its reinforcing effect in phenolic foams, High Perform. Polym. 30 (6) (2018) 688–698.https://doi.org/10.1177/0954008317716976 [45] E. Boorboor Azimi, A. Badiei, J.B. Ghasemi, Efficient removal of malachite green from wastewater by using boron-doped mesoporous carbon nitride, Appl. Surf. Sci. 469 (2019) 236–245.10.1016/j.apsusc.2018.11.017 [46] N. Kanani, M. Bayat, F. Shemirani, J.B. Ghasemi, Z. Bahrami, A. Badiei, Synthesis of magnetically modified mesoporous nanoparticles and their application in simultaneous determination of Pb(II), Cd(II) and Cu(II), Res. Chem. Intermed. 44 (3) (2018) 1689–1709.10.1007/s11164-017-3192-0 [47] A. Banitalebi Dehkordi, A. Ziarati, J.B. Ghasemi, A. Badiei, Preparation of hierarchical g-C3N4@TiO2 hollow spheres for enhanced visible-light induced catalytic CO2 reduction, Sol. Energy 205 (2020) 465–473.10.1016/j.solener.2020.05.071 [48] H. Vojoudi, J.B. Ghasemi, A. Hajihosseinloo, B. Bastan, A. Badiei, One-pot synthesis of hematite-alumina hollow sphere composite by ultrasonic spray pyrolysis technique with high adsorption capacity toward PAHs, Adv. Powder Technol. 32 (4) (2021) 1060–1069.10.1016/j.apt.2021.02.015 [49] F. Mohajer, G. Mohammadi Ziarani, A. Badiei, J.B. Ghasemi, SBA-Pr-Imine-Furan as an environmental adsorbent of Pd(II) in aqueous solutions, Environ. Chall. 3 (2021) 100032.10.1016/j.envc.2021.100032 [50] L. Arjomandi-Behzad, M.K. Rofouei, A. Badiei, J.B. Ghasemi, Simultaneous removal of crystal violet and methyl green in water samples by functionalised SBA-15, Int. J. Environ. Anal. Chem. (2020) 1–17.10.1080/03067319.2020.1804895 [51] F.L. Liu, S. Hua, C. Wang, B.W. Hu, Insight into the performance and mechanism of persimmon tannin functionalized waste paper for U(VI) and Cr(VI) removal, Chemosphere 287 (2022) 132199.10.1016/j.chemosphere.2021.132199 [52] F.L. Liu, S. Hua, C. Wang, M.Q. Qiu, L.M. Jin, B.W. Hu, Adsorption and reduction of Cr(VI) from aqueous solution using cost-effective caffeic acid functionalized corn starch, Chemosphere 279 (2021) 130539.10.1016/j.chemosphere.2021.130539 [53] Y.L. Zhu, X.Y. He, J.L. Xu, Z. Fu, S.Y. Wu, J. Ni, B.W. Hu, Insight into efficient removal of Cr(VI) by magnetite immobilized with Lysinibacillus sp. JLT12: Mechanism and performance, Chemosphere 262 (2021) 127901.https://pubmed.ncbi.nlm.nih.gov/32805660/ [54] Iron oxide coated multiwall carbon nanotubes for the removal of arsenic from water [55] F.Z. Mou, J.G. Guan, H.R. Ma, L.L. Xu, W.D. Shi, Magnetic iron oxide chestnutlike hierarchical nanostructures: Preparation and their excellent arsenic removal capabilities, ACS Appl. Mater. Interfaces 4 (8) (2012) 3987–3993.https://pubmed.ncbi.nlm.nih.gov/22796758/ [56] B. Chen, Z.L. Zhu, Y.W. Guo, Y.L. Qiu, J.F. Zhao, Facile synthesis of mesoporous Ce-Fe bimetal oxide and its enhanced adsorption of arsenate from aqueous solutions, J. Colloid Interface Sci. 398 (2013) 142–151.https://pubmed.ncbi.nlm.nih.gov/23473573/ [57] C. Feng, Removal of Arsenic from Alkaline Process Water of Gold Cyanidation by Use of Functionalised Magnetic Adsorbents, Ph.D Thesis, Curtin University, Perth, 2017. [58] Z.P. Wen, C.M. Dai, Y. Zhu, Y.L. Zhang, Arsenate removal from aqueous solutions using magnetic mesoporous iron manganese bimetal oxides, RSC Adv. 5 (6) (2015) 4058–4068.https://doi.org/10.1039/c4ra09746g [59] P. Suresh Kumar, R.Q. Flores, C. Sjöstedt, L. Önnby, Arsenic adsorption by iron-aluminium hydroxide coated onto macroporous supports: Insights from X-ray absorption spectroscopy and comparison with granular ferric hydroxides, J. Hazard. Mater. 302 (2016) 166–174. |