[1] X. Sun, S. Kim, S.D. Yang, H.S. Kim, J.Y. Yoon, Multi-objective optimization of a Stairmand cyclone separator using response surface methodology and computational fluid dynamics, Powder Technol. 320 (2017) 51–65. [2] A.C. Hoffmann, M. de Groot, W. Peng, H.W.A. Dries, J. Kater, Advantages and risks in increasing cyclone separator length, AIChE J. 47 (11) (2001) 2452–2460. [3] L.S. Brar, R.P. Sharma, K. Elsayed, The effect of the cyclone length on the performance of Stairmand high-efficiency cyclone, Powder Technol. 286 (2015) 668–677. [4] C.J. Stairmand, The Design and performance of cyclone separators, Tran. Instn, Chem. Egrs. 29 (1951) 356–383. [5] G.G. Sun, J.Y. Chen, M.X. Shi, Optimization and applications of reverse-flow cyclones, China Particuology 3 (1–2) (2005) 43–46. [6] E. Muschelknautz, W. Krambrock, Aerodynamische beiwerte des zyklonabscheiders aufgrund neuer und verbesserter messungen, Chemie Ing. Techn. 42 (5) (1970) 247–255. [7] H.S. Bryant, R.W. Silverman, F.A. Zenz, How dust in gas affects cyclone pressure drop, Hydrocarbon Process. (United States) 62(6) (1983) 87–90. [8] J.X. Yang, G.G. Sun, C.Z. Gao, Effect of the inlet dimensions on the maximum-efficiency cyclone height, Sep. Purif. Technol. 105 (2013) 15–23. [9] C.Z. Gao, G.G. Sun, R.Q. Dong, Analysis calculation of the vortex length in a gas cyclone, Acta Pet. Sin. (Pet. Process. Sect.) 28 (1) (2012) 94–98. (in Chinese) [10] F.P. Qian, M.Y. Zhang, Natural vortex lengths of cyclone separators based on response surface methodology, J. Southeast Univ. (Nat. Sci. Ed.). 36 (2) (2006) 247–251. (in Chinese) [11] H. Ci, G.G. Sun, Effects of wall roughness on the flow field and vortex length of cyclone, Procedia Eng. 102 (2015) 1316–1325. [12] X.L. Wu, Z. Xiong, Z.L. Ji, M.X. Shi, Numerical simulation of precessing vortex core in cyclone separator, CIESC J. 58 (2) (2007) 383–390. (in Chinese) [13] Z.W. Gao, J. Wang, J.Y. Wang, Y. Mao, Influence factors of the natural cyclone length in cyclone separators. Acta Pet. Sin. (Pet. Process. Sect.) 35 (3) (2019) 613–620. (in Chinese) [14] J.X. Yang, Z.Z. Dong, C. Shen, W. Zhang, X.G. Hao, G.Q. Guan, Analysis of effect of radial confluence flow on vortex core motion, Powder Technol. 356 (2019) 871–879. [15] C. Shen, Z.Z. Dong, J.Y. Wang, J.X. Yang, X.G. Hao, Effect of installation of apex cone on flow field and performance in cyclone separator. J. Taiyuan Univ. Technol. 51 (1) (2020) 66–72. (in Chinese) [16] B.B. Pei, L. Yang, K.J. Dong, Y.C. Jiang, X.S. Du, B. Wang, The effect of cross-shaped vortex finder on the performance of cyclone separator, Powder Technol. 313 (2017) 135–144. [17] M. Siadaty, S. Kheradmand, F. Ghadiri, Study of inlet temperature effect on single and double inlets cyclone performance, Adv. Powder Technol. 28 (6) (2017) 1459–1473. [18] J.P. Wei, H.T. Zhang, Y.G. Wang, Z.H. Wen, B.H. Yao, J.H. Dong, The gas-solid flow characteristics of cyclones, Powder Technol. 308 (2017) 178–192. [19] F.Q. Zhou, G.G. Sun, X.P. Han, Y. Zhang, W.Q. Bi, Experimental and CFD study on effects of spiral guide vanes on cyclone performance, Adv. Powder Technol. 29 (12) (2018) 3394–3403. [20] F.Q. Zhou, G.G. Sun, Y.M. Zhang, H. Ci, Q. Wei, Experimental and CFD study on the effects of surface roughness on cyclone performance, Sep. Purif. Technol. 193 (2018) 175–183. [21] F. Parvaz, S.H. Hosseini, G. Ahmadi, K. Elsayed, Impacts of the vortex finder eccentricity on the flow pattern and performance of a gas cyclone, Sep. Purif. Technol. 187 (2017) 1–13. [22] E. Kashani, A. Mohebbi, M.G. Heidari, CFD simulation of the preheater cyclone of a cement plant and the optimization of its performance using a combination of the design of experiment and multi-gene genetic programming, Powder Technol. 327 (2018) 430–441. [23] Q. Wei, G.G. Sun, C.Z. Gao, Numerical analysis of axial gas flow in cyclone separators with different vortex finder diameters and inlet dimensions, Powder Technol. 369 (2020) 321–333. [24] H. Fatahian, E. Fatahian, M.E. Nimvari, Improving efficiency of conventional and square cyclones using different configurations of the laminarizer, Powder Technol. 339 (2018) 232–243. [25] G.H. Chen, J.L. Fan, P. Zhang, W.W. Wang, Experimental and CFD investigation on effects of internals on the flow pattern and performance of a divergent cyclone separator, J. Taiwan Inst. Chem. Eng. 115 (2020) 160–168. [26] L. Wang, X.F. Zhang, Z.Z. Dong, Z.K. Zhao, J.X. Yang, X.G. Hao, Effect of inlet structure on transient properties of gas flow in cyclone separator, CIESC J. 69 (8) (2018) 3488–3501. (in Chinese) [27] C.Z. Gao, G.G. Sun, R.Q. Dong, Analysis on location and pressure of vortex end in gas cyclone, CIESC J. 61 (6) (2010) 1399–1405. (in Chinese) [28] A. Avci, I. Karagoz, Effects of flow and geometrical parameters on the collection efficiency in cyclone separators, J. Aerosol Sci. 34 (7) (2003) 937–955. [29] A. Surmen, A. Avci, M.I. Karamangil, Prediction of the maximum-efficiency cyclone length for a cyclone with a tangential entry, Powder Technol. 207 (1–3) (2011) 1–8. [30] R.M. Alexander, Fundamentals of cyclone design and operation, Proc. Aust. Inst. 152 (1949) 203–. [31] H. Büttner, Dimensionless representation of particle separation characteristic of cyclones, J. Aerosol Sci. 30 (10) (1999) 1291–1302. [32] Z.L. Ji, X.L. Wu, M.X. Shi, Experimental research on the natural turning length in the cyclone, Acta Pet. Sin. (Pet. Process. Sect.) 4 (1993) 86–91. (in Chinese) [33] D. Leith, W. Licht, The collection efficiency of cyclone type particle collectors—A new theoretical approach, AIChE Symp. Ser. 68 (126) (1972) 196–206. [34] X. Fu, G.G. Sun, J. Liu, M.X. Shi, Discuss on estimation difficulties and numerical computation methods for short circuit flow in cyclone separators, CIESC J. 62 (9) (2011) 2535–2540. (in Chinese) [35] B. Wang, C. Shen, J.Y. Wang, J.X. Yang, X.G. Hao, Analysis on concentration distribution and trajectory of fine particles in cyclone separator, CIESC J. 71 (S2) (2020) 201–209. (in Chinese) [36] W. Peng, A.C. Hoffmann, H.W.A. Dries, M.A. Regelink, L.E. Stein, Experimental study of the vortex end in centrifugal separators: the nature of the vortex end, Chem. Eng. Sci. 60 (24) (2005) 6919–6928. [37] W.M. Peng, A.C. Hoffmann, H.W.A. Dries, M. Regelink, K.K. Foo, Neutrally buoyant tracer in gas cleaning equipment: A case study, Meas. Sci. Technol. 16 (12) (2005) 2405–. [38] M. Wasilewski, Analysis of the effect of counter-cone location on cyclone separator efficiency, Sep. Purif. Technol. 179 (2017) 236–247. |