[1] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: a review, Chin. J. Chem. Eng. 26 (11) (2018) 2229–2237. http://dx.doi.org/10.1016/j.cjche.2018.08.003 [2] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: a review, Chin. J. Chem. Eng. 26 (11) (2018) 2229–2237. http://dx.doi.org/10.1016/j.cjche.2018.08.003 [3] A. Ghanbari, R. Khordad, Influence of potential attraction term on Joule-Thomson coefficient, enthalpy and entropy of real gases, Phys. B Condens. Matter 624 (2022) 413418. http://dx.doi.org/10.1016/j.physb.2021.413418 [4] J.F. Li, B. Yu, Gas properties, fundamental equations of state and phase relationships. Sustainable Natural Gas Reservoir and Production Engineering. Elsevier, Amsterdam, 2022(1–28). https://doi.org/10.1016/b978-0-12-824495-1.00004-8 [5] A. Ugwu, A. Zaabout, S. Amini, An advancement in CO2 utilization through novel gas switching dry reforming, Int. J. Greenh. Gas Control 90 (2019) 102791. http://dx.doi.org/10.1016/j.ijggc.2019.102791 [6] S. Cloete, L. Hirth, Flexible power and hydrogen production: finding synergy between CCS and variable renewables, Energy 192 (2020) 116671. http://dx.doi.org/10.1016/j.energy.2019.116671 [7] Voldsund, M., Jordal, K., Anantharaman, R. Hydrogen production with CO2 capture, Int J Hydrogen Energ, 41(9)(2016)4969-4992. [8] H. Yu, Recent developments in aqueous ammonia-based post-combustion CO2 capture technologies, Chin. J. Chem. Eng. 26 (11) (2018) 2255–2265. http://dx.doi.org/10.1016/j.cjche.2018.05.024 [9] S.T. Munkejord, M. Hammer, S.W. Løvseth, CO2 transport: data and models–A review, Appl. Energy 169 (2016) 499–523. http://dx.doi.org/10.1016/J.APENERGY.2016.01.100 [10] Sanchez-Vicente, Y., Drage, T.C., Poliakoff, M., Ke, J., George, M.W. Densities of the carbon dioxide+ hydrogen, a system of relevance to carbon capture and storage, Int J Greenh Gas Con, 13 (2013)78-86. [11] O. Fandiño, J.P.M. Trusler, D. Vega-Maza, Phase behavior of (CO2 + H2) and (CO2 + N2) at temperatures between (218.15 and 303.15) K at pressures up to 15 MPa, Int. J. Greenh. Gas Control 36 (2015) 78–92. http://dx.doi.org/10.1016/j.ijggc.2015.02.018 [12] C.Y. Tsang, W.B. Street, Phase equilibria in the H2/CO2 system at temperatures from 220 to 290 K and pressures to 172 MPa, Chem. Eng. Sci. 36 (6) (1981) 993–1000. http://dx.doi.org/10.1016/0009-2509(81)80085-1 [13] H. Mahgerefteh, S. Brown, S. Martynov, A study of the effects of friction, heat transfer, and stream impurities on the decompression behavior in CO2 pipelines, Greenh. Gases Sci. Technol. 2 (5) (2012) 369–379. http://dx.doi.org/10.1002/ghg.1302 [14] H.L. Li, Ø. Wilhelmsen, Y.X. Lv, W.L. Wang, J.Y. Yan, Viscosities, thermal conductivities and diffusion coefficients of CO2 mixtures: review of experimental data and theoretical models, Int. J. Greenh. Gas Control 5 (5) (2011) 1119–1139. http://dx.doi.org/10.1016/j.ijggc.2011.07.009 [15] Y.X. Li, S.W. Gu, D.T. Zhang, Q.H. Hu, L. Teng, C.L. Wang, An experimental study on the choked flow characteristics of CO2 pipelines in various phases, Chin. J. Chem. Eng. 32 (2021) 17–26. http://dx.doi.org/10.1016/j.cjche.2020.09.068 [16] V.A.V.L. Chodankar, Aswatha, K.N. Seetharamu, Improved effectiveness of a cryogenic counter-current parallel flow - Three fluid heat exchanger with three thermal communication due to Joule Thomson pressure drop, Int. J. Therm. Sci. 172 (2022) 107267. http://dx.doi.org/10.1016/j.ijthermalsci.2021.107267 [17] Atkins, P., Overton, T. Shriver and Atkins' inorganic chemistry, Oxford University Press, USA, 2010. [18] K.H. Han, S.P. Noh, I.K. Hong, K.A. Park, Cooling domain prediction of HFCs and HCFCs refrigerant with Joule-Thomson coefficient, J. Ind. Eng. Chem. 18 (2) (2012) 617–622. http://dx.doi.org/10.1016/j.jiec.2011.11.073 [19] R.A. Pierotti, T.R. Rybolt, Statistical thermodynamics of aerosols and the gas-solid Joule-Thomson effect, J. Chem. Phys. 80 (8) (1984) 3826–3830. http://dx.doi.org/10.1063/1.447163 [20] I. Marić, The Joule-Thomson effect in natural gas flow-rate measurements, Flow Meas. Instrum. 16 (6) (2005) 387–395. http://dx.doi.org/10.1016/j.flowmeasinst.2005.04.006 [21] B. Gimeno, M. Artal, I. Velasco, S.T. Blanco, J. Fernández, Influence of SO2 on CO2 storage for CCS technology: evaluation of CO2/SO2 co-capture, Appl. Energy 206 (2017) 172–180. http://dx.doi.org/10.1016/j.apenergy.2017.08.048 [22] Z. Ziabakhsh-Ganji, H. Kooi, Sensitivity of Joule-Thomson cooling to impure CO2 injection in depleted gas reservoirs, Appl. Energy 113 (2014) 434–451. http://dx.doi.org/10.1016/j.apenergy.2013.07.059 [23] D. Loeve, C. Hofstee, J.G. Maas, Thermal effects in a depleted gas field by cold CO2 injection in the presence of methane, Energy Procedia 63 (2014) 5378–5393. http://dx.doi.org/10.1016/j.egypro.2014.11.569 [24] F. Kazemifar, D.C. Kyritsis, Experimental investigation of near-critical CO2 tube-flow and Joule-Thompson throttling for carbon capture and sequestration, Exp. Therm. Fluid Sci. 53 (2014) 161–170. http://dx.doi.org/10.1016/j.expthermflusci.2013.11.026 [25] J.X. Chen, M. Veenstra, J. Purewal, B. Hobein, S. Papasavva, Modeling a hydrogen pressure regulator in a fuel cell system with Joule-Thomson effect, Int. J. Hydrog. Energy 44 (2) (2019) 1272–1287. http://dx.doi.org/10.1016/j.ijhydene.2018.11.020 [26] A. Hosseini, A. Khoshsima, Evaluation of translated-consistent equations of state compared for the prediction of the Joule-Thomson effect at high pressures and high temperatures, Fluid Phase Equilibria 523 (2020) 112775. http://dx.doi.org/10.1016/j.fluid.2020.112775 [27] J.H. Perry, The joule-Thomson effect for helium, J. Phys. Chem. 28 (10) (1924) 1108–1112. https://doi.org/10.1021/j150244a009 [28] T. Regueira, F. Varzandeh, E.H. Stenby, W. Yan, Heat capacity and Joule-Thomson coefficient of selected n-alkanes at 0.1 and 10 MPa in broad temperature ranges, J. Chem. Thermodyn. 111 (2017) 250–264. http://dx.doi.org/10.1016/j.jct.2017.03.034 [29] J.T. Wang, Z.Y. Wang, B.J. Sun, Improved equation of CO2 Joule-Thomson coefficient, J. CO2 Util. 19 (2017) 296–307. http://dx.doi.org/10.1016/j.jcou.2017.04.007 [30] J.R. Roebuck, T.A. Murrell, E.E. Miller, The joule-Thomson effect in carbon dioxide, J. Am. Chem. Soc. 64 (2) (1942) 400–411. http://dx.doi.org/10.1021/ja01254a048 [31] D. Price, Thermodynamic functions of carbon dioxide. joule-Thomson coefficient, isochoric heat capacity, and isentropic behavior at 100℃ to 1000° C. and 50 to 1400 bars, Ind. Eng. Chem. Chem. Eng. Data Series 1 (1) (1956) 83–86. https://doi.org/10.1021/i460001a016 [32] S.R. de Groot, A. Michels, The Joule—Thomson effect and the specific heat at constant pressure of carbon dioxide, Physica 14 (4) (1948) 218–222. http://dx.doi.org/10.1016/0031-8914(48)90039-1 [33] H.J. Ng, A.E. Mather, Isothermal Joule-Thomson coefficients in mixtures of methane and carbon dioxide, J. Chem. Eng. Data 21 (3) (1976) 291–295. http://dx.doi.org/10.1021/je60070a001 [34] J.P. Strakey, C.O. Bennett, B.F. Dodge, Joule-Thomson coefficients of argon-carbon dioxide mixtures, AIChE J. 20 (4) (1974) 803–814. https://doi.org/10.1002/aic.690200423 [35] R. Ayber, Joule-Thomson effect in hydrogen-methane mixtures at temperatures between—35 and +40°. Progress in Refrigeration Science and Technology. Amsterdam: Elsevier, 1965: 311–318. https://doi.org/10.1016/b978-1-4831-9857-6.50061-3 [36] R.E. Randelman, L.A. Wenzel, Joule-Thomson coefficients of hydrogen and methane mixtures, J. Chem. Eng. Data 33 (3) (1988) 293–299. https://doi.org/10.1021/je00053a021 [37] S.N. Shoghl, A. Naderifar, F. Farhadi, G. Pazuki, Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling, J. Nat. Gas Sci. Eng. 83 (2020) 103570. http://dx.doi.org/10.1016/j.jngse.2020.103570 [38] Poling, B.E., Prausnitz, J.M., O Connell, J.P. Properties of Gases and Liquids, McGraw-Hill Education, New York, 2001. [39] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa, J. Phys. Chem. Ref. Data 25 (6) (1996) 1509–1596. http://dx.doi.org/10.1063/1.555991 [40] D.V. Nichita, C.F. Leibovici, Calculation of Joule-Thomson inversion curves for two-phase mixtures, Fluid Phase Equilibria 246 (1–2) (2006) 167–176. http://dx.doi.org/10.1016/j.fluid.2006.05.025 [41] Lemmon, E.W., Huber, M.L., Mclinden, M.O. Nist Standard Reference Database 23: Refprop Version 9.0, National Institute of Standards and Technology Boulder, Colorado, 2002. [42] Joint Committee for, Guides in Metrology, Evaluation of measurement data—Guide to the expression of the uncertainty in measurement (GUM 1995 with minor corrections), Joint Committee for Guides in, Metrology (2008). [43] R.C. Ahlert, L.A. Wenzel, Joule-Thomson effects in gas mixtures: the nitrogen-methane-ethane system, AIChE J. 15 (2) (1969) 256–263. http://dx.doi.org/10.1002/aic.690150224 [44] M.X. Li, Y.F. Bai, C.Z. Zhang, Y.X. Song, S.F. Jiang, D. Grouset, M.J. Zhang, Review on the research of hydrogen storage system fast refueling in fuel cell vehicle, Int. J. Hydrog. Energy 44 (21) (2019) 10677–10693. http://dx.doi.org/10.1016/j.ijhydene.2019.02.208 [45] M. Striednig, S. Brandstätter, M. Sartory, M. Klell, Thermodynamic real gas analysis of a tank filling process, Int. J. Hydrog. Energy 39 (16) (2014) 8495–8509. http://dx.doi.org/10.1016/j.ijhydene.2014.03.028 [46] Y. Kim, D. Shin, C. Kim, On-board cold thermal energy storage system for hydrogen fueling process, Energies 12 (3) (2019) 561. https://doi.org/10.3390/en12030561 [47] M. Kanniche, R. Gros-Bonnivard, P. Jaud, J. Valle-Marcos, J.M. Amann, C. Bouallou, Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture, Appl. Therm. Eng. 30 (1) (2010) 53–62. http://dx.doi.org/10.1016/j.applthermaleng.2009.05.005 [48] N.S. Siefert, S. Litster, Exergy and economic analyses of advanced IGCC-CCS and IGFC-CCS power plants, Appl. Energy 107 (2013) 315–328. http://dx.doi.org/10.1016/j.apenergy.2013.02.006 [49] G.P. Hu, K.H. Smith, Y. Wu, K.A. Mumford, S.E. Kentish, G.W. Stevens, Carbon dioxide capture by solvent absorption using amino acids: a review, Chin. J. Chem. Eng. 26 (11) (2018) 2229–2237. http://dx.doi.org/10.1016/j.cjche.2018.08.003 [50] U.K. Deiters, I.H. Bell, Unphysical critical curves of binary mixtures predicted with GERG models, Int. J. Thermophys. 41 (12) (2020) 1–19. http://dx.doi.org/10.1007/s10765-020-02743-3 [51] O. Redlich, J.N.S. Kwong, On the thermodynamics of solutions. V. an equation of state. fugacities of gaseous solutions, Chem. Rev. 44 (1) (1949) 233–244. https://doi.org/10.1021/cr60137a013 [52] G.M. Wilson, Calculation of enthalpy data from a modified redlich-kwong equation of state. Advances in Cryogenic Engineering. Boston, MA: Springer US, 1966: 392–400. https://doi.org/10.1007/978-1-4757-0522-5_43 [53] C.H. Twu, J.E. Coon, J.R. Cunningham, A new generalized alpha function for a cubic equation of state Part 1. Peng-Robinson equation, Fluid Phase Equilibria 105 (1) (1995) 49–59. http://dx.doi.org/10.1016/0378-3812(94)02601-V [54] K.E. Starling, M.S. Han, Thermo data refined for LPG. Pt. 15. Industrial applications, Hydrocarbon Process, 51(6) (1972)107-115. [55] O. Kunz, W. Wagner, The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004, J. Chem. Eng. Data 57 (11) (2012) 3032–3091. http://dx.doi.org/10.1021/je300655b [56] X.X. Yang, M. Richter, Z. Wang, Z. Li, Density measurements on binary mixtures (nitrogen + carbon dioxide and argon + carbon dioxide) at temperatures from (298.15 to 423.15) K with pressures from (11 to 31) MPa using a single-sinker densimeter, J. Chem. Thermodyn. 91 (2015) 17–29. http://dx.doi.org/10.1016/j.jct.2015.07.014 [57] Lozano-Martin, D., Martín, M.C., Chamorro, C.R., Tuma, D., Segovia, J.J. Speed of sound for three binary (CH4+ H2) mixtures from p=(0.5 up to 20) MPa at T=(273.16 to 375) K, Int J Hydrogen Energ, 45(7) (2020)4765-4783. [58] J. Ke, N. Suleiman, Y. Sanchez-Vicente, T.S. Murphy, J. Rodriguez, A. Ramos, M. Poliakoff, M.W. George, The phase equilibrium and density studies of the ternary mixtures of CO2 + Ar + N2 and CO2 + Ar + H2, systems relevance to CCS technology, Int. J. Greenh. Gas Control 56 (2017) 55–66. http://dx.doi.org/10.1016/j.ijggc.2016.11.003 [59] Deiters, U.K. Comments on the modeling of hydrogen and hydrogen-containing mixtures with cubic equations of state, Fluid Phase Equilibr, 352, (2013)93-96. [60] Coquelet, C., Chapoy, A., Richon, D. Development of a new alpha function for the Peng–Robinson equation of state: comparative study of alpha function models for pure gases (natural gas components) and water-gas systems, Int J Thermophys, 25(1), (2004)133-158. [61] F. Varzandeh, E.H. Stenby, W. Yan, Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems, Fluid Phase Equilibria 434 (2017) 21–43. http://dx.doi.org/10.1016/j.fluid.2016.11.016 [62] N.S. Matin, B. Haghighi, Calculation of the Joule-Thomson inversion curves from cubic equations of state, Fluid Phase Equilibria 175 (1–2) (2000) 273–284. http://dx.doi.org/10.1016/S0378-3812(00)00443-X [63] A. Ugwu, A. Zaabout, J.R. Tolchard, P.I. Dahl, S. Amini, Gas Switching Reforming for syngas production with iron-based oxygen carrier-the performance under pressurized conditions, Int. J. Hydrog. Energy 45 (2) (2020) 1267–1282. http://dx.doi.org/10.1016/j.ijhydene.2019.03.191 |