[1] M. Yan, Y.Z. Li, G.F. Chen, L.Q. Zhang, Y.P. Mao, C.Y. Ma, A novel flue gas pre-treatment system of post-combustion CO2 capture in coal-fired power plant, Chem. Eng. Res. Des. 128 (2017) 331–341. [2] Z.J. Liu, D.W. Zhang, T.H. Wei, L.Q. Wang, X.J. Li, B.X. Liu, Adsorption characteristics of formaldehyde on nitrogen doped graphene-based single atom adsorbents: A DFT study, Appl. Surf. Sci. 493 (2019) 1260–1267. [3] H. Xiang, X.L. Fan, F.R. Siperstein, Understanding ethane/ethylene adsorption selectivity in ethane-selective microporous materials, Sep. Purif. Technol. 241 (2020) 116635. [4] S.H. Yoon, Y.N. Chun, Development of a novel Volumetric Matrix Dump Combustor for VOC reduction, Chem. Eng. Res. Des. 122 (2017) 308–315. [5] K.S. Hwang, J.H. Jun, W.K. Lee, Fixed-bed adsorption for bulk component system. Non-equilibrium, non-isothermal and non-adiabatic model, Chem. Eng. Sci. 50 (5) (1995) 813–825. [6] R. Ben-Mansour, M.A. Habib, O.E. Bamidele, M. Basha, N.A.A. Qasem, A. Peedikakkal, T. Laoui, M. Ali, Carbon capture by physical adsorption: Materials, experimental investigations and numerical modeling and simulations - A review, Appl. Energy 161 (2016) 225–255. [7] W.W. Li, S.K. Wei, W.Z. Jiao, G.S. Qi, Y.Z. Liu, Modelling of adsorption in rotating packed bed using artificial neural networks (ANN), Chem. Eng. Res. Des. 114 (2016) 89–95. [8] M.A. Al-Ghouti, D.A. Da'ana, Guidelines for the use and interpretation of adsorption isotherm models: A review, J. Hazard. Mater. 393 (2020) 122383. [9] M. Nouri, G. Rahpaima, M.M. Nejad, M. Imani, Computational simulation of CO2 capture process in a fluidized-bed reactor, Comput. Chem. Eng. 108 (2018) 1–10. [10] A. Golchoobi, H. Pahlavanzadeh, Molecular simulation, experiments and modelling of single adsorption capacity of 4A molecular sieve for CO2-CH4 separation, Sep. Sci. Technol. 51 (14) (2016) 2318–2325. [11] R. Ben-Mansour, M. Basha, N.A.A. Qasem, Multicomponent and multi-dimensional modeling and simulation of adsorption-based carbon dioxide separation, Comput. Chem. Eng. 99 (2017) 255–270. [12] S.S. Chen, C.L. Qin, T. Deng, J.J. Yin, J.Y. Ran, Particle-scale modeling of the simultaneous carbonation and sulfation in calcium looping for CO2 capture, Sep. Purif. Technol. 252 (2020) 117439. [13] B.R. Müller, Effect of particle size and surface area on the adsorption of albumin-bonded bilirubin on activated carbon, Carbon 48 (12) (2010) 3607–3615. [14] G. Carta, A. Ubiera, Particle-size distribution effects in batch adsorption, AIChE J. 49 (12) (2003) 3066–3073. [15] H. Abir, M. Sheintuch, Atomistic calculation of adsorption in activated carbon with pore-size distribution, J. Colloid Interface Sci. 342 (2) (2010) 445–454. [16] W.Y. Pang, Z.H. Jin, Methane absolute adsorption in kerogen nanoporous media with realistic continuous pore size distributions, Energy Fuels 34 (10) (2020) 12158–12172. [17] V. Quedeville, H. Ouazaite, B. Polizzi, R.O. Fox, P. Villedieu, P. Fede, F. Létisse, J. Morchain, A two-dimensional population balance model for cell growth including multiple uptake systems, Chem. Eng. Res. Des. 132 (2018) 966–981. [18] M. Hasan, S. Palaniandy, M. Hilden, M. Powell, Simulating product size distribution of an industrial scale VertiMill® using a time-based population balance model, Miner. Eng. 127 (2018) 312–317. [19] C.Y. Ma, X.Z. Wang, K.J. Roberts, Morphological population balance for modeling crystal growth in face directions, AIChE J. 54 (1) (2008) 209–222. [20] Y.D. Shu, J.J. Liu, Y. Zhang, X.Z. Wang, A multi-stage multi-component transfer rate morphological population balance model for crystallization processes, Cryst Eng Comm 21 (28) (2019) 4212–4220. [21] Y.D. Shu, J.J. Liu, Y. Zhang, X.Z. Wang, Considering nucleation, breakage and aggregation in morphological population balance models for crystallization processes, Comput. Chem. Eng. 136 (2020) 106781. [22] D. Ramkrishna, M.R. Singh, Population balance modeling: Current status and future prospects, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 123–146. [23] C.H. Liaw, J.S.P. Wang, R.A. Greenkorn, K.C. Chao, Kinetics of fixed-bed adsorption: A new solution, AIChE J. 25 (2) (1979) 376–381. [24] D.H. Bangham, W. Sever, XCIII. An experimental investigation of the dynamical equation of the process of gas-sorption, Lond. Edinb. Dublin Philos. Mag. J. Sci. 49 (293) (1925) 935–944. [25] T. Vermeulen, Theory for irreversible and constant-pattern solid diffusion, Ind. Eng. Chem. 45 (8) (1953) 1664–1670. [26] R. Gunawan, I. Fusman, R.D. Braatz, High resolution algorithms for multidimensional population balance equations, AIChE J. 50 (11) (2004) 2738–2749. [27] B. van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme, J. Comput. Phys. 14 (4) (1974) 361–370. [28] C.J. Na, M.J. Yoo, D.C.W. Tsang, H.W. Kim, K.H. Kim, High-performance materials for effective sorptive removal of formaldehyde in air, J. Hazard. Mater. 366 (2019) 452–465. [29] P. Kowalczyk, P.A. Gauden, M. Wiśniewski, A.P. Terzyk, S. Furmaniak, A. Burian, K. Kaneko, A.V. Neimark, Atomic-scale molecular models of oxidized activated carbon fibre nanoregions: Examining the effects of oxygen functionalities on wet formaldehyde adsorption, Carbon 165 (2020) 67–81. [30] P.H. Huang, S.C. Hung, M.Y. Huang, Molecular dynamics investigations of liquid–vapor interaction and adsorption of formaldehyde, oxocarbons, and water in graphitic slit pores, Phys. Chem. Chem. Phys. 16 (29) (2014) 15289–15298. [31] J. Crank , The Mathematics of Diffusion , Clarendon Press , Oxford , 1975. [32] H. Wang, Y. Liu, Z. Li, X. Yang, Kinetic models and numerical simulation of SO2 adsorption on activated carbon, J. Chin. Coal. Soc. 40(1) (2015) 203-211. [33] S. Shin, J. Song, Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon, J. Hazard. Mater. 194 (2011) 385–392. [34] E.S. Rubin, IPCC special report on carbon dioxide capture and storage, economics & politics of climate change, RITE International Workshop on CO2 Geological Storage, Tokyo, Japan, 2005. [35] L.F.A.S. Zafanelli, A. Henrique, M. Karimi, A.E. Rodrigues, J.A.C. Silva, Single- and multicomponent fixed bed adsorption of CO2, CH4, and N2 in binder-free beads of 4A zeolite, Ind. Eng. Chem. Res. 59 (30) (2020) 13724–13734. [36] H. Ahn, J.H. Moon, S.H. Hyun, C.H. Lee, Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets, Adsorption 10 (2) (2004) 111–128. [37] P.Y. Li, F.H. Tezel, Adsorption separation of N2, O2, CO2 and CH4 gases by β-zeolite, Microporous Mesoporous Mater. 98 (1–3) (2007) 94–101. [38] G.N. Nikolaidis, E.S. Kikkinides, M.C. Georgiadis, A model-based approach for the evaluation of new zeolite 13X-based adsorbents for the efficient post-combustion CO2 capture using P/VSA processes, Chem. Eng. Res. Des. 131 (2018) 362–374. [39] Y. Li, T.S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, J. Membr. Sci. 260 (1–2) (2005) 45–55. [40] D. Panda, E.A. Kumar, S.K. Singh, Amine modification of binder-containing zeolite 4A bodies for post-combustion CO2 capture, Ind. Eng. Chem. Res. 58 (13) (2019) 5301–5313. [41] R. Seabra, A.M. Ribeiro, K. Gleichmann, A.F.P. Ferreira, A.E. Rodrigues, Adsorption equilibrium and kinetics of carbon dioxide, methane and nitrogen on binderless zeolite 4A adsorbents, Microporous Mesoporous Mater. 277 (2019) 105–114. [42] D.M. Ruthven, Principles of Adsorption and Adsorption Processes, Wiley, New York. (1984). [43] N. Haq, D.M. Ruthven, Chromatographic study of sorption and diffusion in 4A zeolite, J. Colloid Interface Sci. 112 (1) (1986) 154–163. |