[1] M. Glugla, R. Lässer, L. Dörr, D.K. Murdoch, R. Haange, H. Yoshida, The inner deuterium/tritium fuel cycle of ITER, Fusion Eng. Des. 69 (1–4) (2003) 39–43. [2] F. Atchison, P. Beaud, T. Bryś, M. Daum, P. Fierlinger, R. Henneck, T. Hofmann, K. Kirch, G. Kühne, G. Knopp, A. Pichlmaier, A. Serebrov, H. Spitzer, J. Wambach, J. Wimmer, A. Wokaun, K. Bodek, P. Geltenbort, M. Giersch, J. Zmeskal, K. Mishima, Ortho-Para equilibrium in a liquid D2 neutron moderator under irradiation, Phys. Rev. B 68 (9) (2003) 094114. [3] M. Gómez-Gallego, M.A. Sierra, Kinetic isotope effects in the study of organometallic reaction mechanisms, Chem. Rev. 111 (8) (2011) 4857–4963. [4] J.J. Blostein, L.A.R. Palomino, J. Dawidowski, Measurements of the neutron cross sections of hydrogen and deuterium in H2O-D2O mixtures using the deep inelastic neutron-scattering technique, Phys. Rev. Lett. 102 (9) (2009) 097401. [5] P. Revill, N. Serradell, J. Bolos, Paliperidone: Antipsychotic agent treatment of bipolar disorder dual dopamine D2/5TH2A receptor antagonist, Drugs Future 31 (7) (2006) 579–584. [6] J. Gonzalez, R.N. Devi, D.P. Tunstall, P.A. Cox, P.A. Wright, Deuterium NMR studies of framework and guest mobility in the metal-organic framework compound MOF-5, Zn4O(O2CC6H4CO2)3, Microporous Mesoporous Mater. 84 (1–3) (2005) 97–104. [7] K. Sanderson, Big interest in heavy drugs: the drug industry is seeking profits by modifying hydrogen in existing medications, Nature, 458 (7236) (2009) 269–270. [8] H.K. Rae, Separation of Hydrogen Isotopes, American Chemical Society, Washington, DC, 1978. [9] H. Oh, M. Hirscher, Quantum sieving for separation of hydrogen isotopes using MOFs, Eur. J. Inorg. Chem. 2016 (27) (2016) 4278–4289. [10] M. Liu, L.D. Zhang, M.A. Little, V. Kapil, M. Ceriotti, S.Y. Yang, L.F. Ding, D.L. Holden, R. Balderas-Xicohténcatl, D.L. He, R. Clowes, S.Y. Chong, G. Schütz, L.J. Chen, M. Hirscher, A.I. Cooper, Barely porous organic cages for hydrogen isotope separation, Science 366 (6465) (2019) 613–620. [11] Y.N. Si, X. He, J. Jiang, Z.M. Duan, W.J. Wang, D.Q. Yuan, Highly effective H2/D_2 separation in a stable Cu-based metal-organic framework, Nano Res. 14 (2) (2021) 518–525. [12] J.M. Salazar, M. Badawi, B. Radola, M. Macaud, J.M. Simon, Quantum effects on the diffusivity of hydrogen isotopes in zeolites, J. Phys. Chem. C 123 (38) (2019) 23455–23463. [13] S. Niimura, T. Fujimori, D. Minami, Y. Hattori, L. Abrams, D. Corbin, K.J. Hata, K. Kaneko, Dynamic quantum molecular sieving separation of D2 from H2-D2 mixture with nanoporous materials, J. Am. Chem. Soc. 134 (45) (2012) 18483–18486. [14] X.B. Zhao, S. Villar-Rodil, A.J. Fletcher, K.M. Thomas, Kinetic isotope effect for H2 and D2 quantum molecular sieving in adsorption/desorption on porous carbon materials, J. Phys. Chem. B 110 (20) (2006) 9947–9955. [15] R.J. Xiong, R. Balderas Xicohténcatl, L.D. Zhang, P.L. Li, Y. Yao, G. Sang, C.G. Chen, T. Tang, D.L. Luo, M. Hirscher, Thermodynamics, kinetics and selectivity of H2 and D2 on zeolite 5A below 77K, Microporous Mesoporous Mater. 264 (2018) 22–27. [16] J.H. Ren, M. Chang, W.J. Zeng, Y.H. Xia, D.H. Liu, G. Maurin, Q.Y. Yang, Computer-aided discovery of MOFs with calixarene-analogous microenvironment for exceptional SF6 capture, Chem. Mater. 33 (13) (2021) 5108–5114. [17] Yan tongan, Lan Y.S., Liu D.H., Yang Q.Y., Zhong. C.L, Large-scale screening and design of metal–organic frameworks for CH 4/N 2 separation, Chem. Asian J. 14 (20) (2019) 3688–3693. [18] A. Thomas, R. Ahamed, M. Prakash, Effect of functional group in the zeolitic imidazolate framework for selective CH4/CO and CO/N2 separation: a theoretical study, Mater. Lett. 303 (2021) 130575. [19] B. Liu, B. Smit, Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks, Langmuir 25 (10) (2009) 5918–5926. [20] J.Y. Kim, H. Oh, H.R. Moon, Hydrogen isotope separation in confined nanospaces: carbons, zeolites, metal-organic frameworks, and covalent organic frameworks, Adv. Mater. 31 (20) (2019) e1805293. [21] K.S. Deeg, J.J. Gutiérrez-Sevillano, R. Bueno-Pérez, J.B. Parra, C.O. Ania, M. Doblaré, S. Calero, Insights on the molecular mechanisms of hydrogen adsorption in zeolites, J. Phys. Chem. C 117 (27) (2013) 14374–14380. [22] S.R. Challa, D.S. Sholl, J.K. Johnson, Adsorption and separation of hydrogen isotopes in carbon nanotubes: Multicomponent grand canonical Monte Carlo simulations, J. Chem. Phys. 116 (2) (2002) 814–824. [23] L.D. Zhang, S. Jee, J. Park, M. Jung, D. Wallacher, A. Franz, W. Lee, M. Yoon, K. Choi, M. Hirscher, H. Oh, Exploiting dynamic opening of apertures in a partially fluorinated MOF for enhancing H2 desorption temperature and isotope separation, J. Am. Chem. Soc. 141 (50) (2019) 19850–19858. [24] T. Wulf, T. Heine, Toward separation of hydrogen isotopologues by exploiting zero-point energy difference at strongly attractive adsorption site models, Int. J. Quantum Chem. 118 (9) (2018) e25545. [25] H. Oh, I. Savchenko, A. Mavrandonakis, T. Heine, M. Hirscher, Highly effective hydrogen isotope separation in nanoporous metal-organic frameworks with open metal sites: direct measurement and theoretical analysis, ACS Nano 8 (1) (2014) 761–770. [26] G.P. Han, Y. Gong, H.L. Huang, D.W. Cao, X.J. Chen, D.H. Liu, C.L. Zhong, Screening of metal–organic frameworks for highly effective hydrogen isotope separation by quantum sieving, ACS Appl. Mater. Interfaces 10 (38) (2018) 32128–32132. [27] M.S. Zhou, A. Vassallo, J.Z. Wu, Toward the inverse design of MOF membranes for efficient D2/H2 separation by combination of physics-based and data-driven modeling, J. Membr. Sci. 598 (2020) 117675. [28] Y.G. Chung, E. Haldoupis, B.J. Bucior, M. Haranczyk, S. Lee, H.D. Zhang, K.D. Vogiatzis, M. Milisavljevic, S.L. Ling, J.S. Camp, B. Slater, J.I. Siepmann, D.S. Sholl, R.Q. Snurr, Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: core MOF 2019, J. Chem. Eng. Data 64 (12) (2019) 5985–5998. [29] R. Rodríguez-Cantano, R. Pérez de Tudela, M. Bartolomei, M.I. Hernández, J. Campos-Martínez, T. González-Lezana, P. Villarreal, J. Hernández-Rojas, J. Bretón, Examination of the Feynman–hibbs approach in the study of NeN-coronene clusters at low temperatures, J. Phys. Chem. A 120 (27) (2016) 5370–5379. [30] T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater. 149 (1) (2012) 134–141. [31] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, J. Phys. Chem. 94 (26) (1990) 8897–8909. [32] A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard III, W.M. Skiff, UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations, J. Am. Chem. Soc. 114 (25) (1992) 10024–10035. [33] F. Darkrim, D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes, J. Chem. Phys. 109 (12) (1998) 4981–4984. [34] C.E. Wilmer, K.C. Kim, R.Q. Snurr, An extended charge equilibration method, J. Phys. Chem. Lett. 3 (17) (2012) 2506–2511. [35] E. Haldoupis, S. Nair, D.S. Sholl, Finding MOFs for highly selective CO2/N2 adsorption using materials screening based on efficient assignment of atomic point charges, J Am Chem Soc 134 (9) (2012) 4313–4323. [36] B.L. Chen, X.B. Zhao, A. Putkham, K.L. Hong, E.B. Lobkovsky, E.J. Hurtado, A.J. Fletcher, K.M. Thomas, Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material, J. Am. Chem. Soc. 130 (20) (2008) 6411–6423. [37] B. Widom, Some topics in the theory of fluids, J. Chem. Phys. 39 (11) (1963) 2808–2812. [38] V.A. Blatov, A.P. Shevchenko, D.M. Proserpio, Applied topological analysis of crystal structures with the program package ToposPro, Cryst. Growth Des. 14 (7) (2014) 3576–3586. [39] D.J. Evans, B.L. Holian, The nose–hoover thermostat, J. Chem. Phys. 83 (8) (1985) 4069–4074. [40] Q.Y. Yang, D.H. Liu, C.L. Zhong, J.R. Li, Development of computational methodologies for metal–organic frameworks and their application in gas separations, Chem. Rev. 113 (10) (2013) 8261–8323. [41] D. Wu, C.C. Wang, B. Liu, D.H. Liu, Q.Y. Yang, C.L. Zhong, Large-scale computational screening of metal-organic frameworks for CH4/H2 separation, AIChE J. 58 (7) (2012) 2078–2084. [42] Z.W. Qiao, K. Zhang, J.W. Jiang, In silico screening of 4764 computation-ready, experimental metal–organic frameworks for CO2 separation, J. Mater. Chem. A 4 (6) (2016) 2105–2114. [43] Z.W. Qiao, Y.L. Yan, Y.X. Tang, H. Liang, J.W. Jiang, Metal–organic frameworks for xylene separation: from computational screening to machine learning, J. Phys. Chem. C 125 (14) (2021) 7839–7848. [44] X.Y. Yuan, X.M. Deng, C.Z. Cai, Z.N. Shi, H. Liang, S.H. Li, Z.W. Qiao, Machine learning and high-throughput computational screening of hydrophobic metal-organic frameworks for capture of formaldehyde from air, Green Energy Environ. 6 (5) (2021) 759–770. [45] X.M. Deng, W.Y. Yang, S.H. Li, H. Liang, Z.N. Shi, Z.W. Qiao, Large-scale screening and machine learning to predict the computation-ready, experimental metal-organic frameworks for CO2 capture from air, Appl. Sci. 10 (2) (2020) 569. [46] Z.N. Shi, W.Y. Yang, X.M. Deng, C.Z. Cai, Y.L. Yan, H. Liang, Z.L. Liu, Z.W. Qiao, Machine-learning-assisted high-throughput computational screening of high performance metal–organic frameworks, Mol. Syst. Des. Eng. 5 (4) (2020) 725–742. [47] F.X. Zhou, B.S. Zheng, D.H. Liu, Z.X. Wang, Q.Y. Yang, Large-scale structural refinement and screening of zirconium metal-organic frameworks for H2 S/CH 4 separation, ACS Appl. Mater. Interfaces 11 (50) (2019) 46984–46992. [48] A.N.V. Azar, S. Keskin, Computational screening of MOFs for acetylene separation, Front Chem 6 (2018) 36. [49] D. Noguchi, H. Tanaka, A. Kondo, H. Kajiro, H. Noguchi, T. Ohba, H. Kanoh, K. Kaneko, Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2, J Am Chem Soc 130 (20) (2008) 6367–6372. [50] S.A. FitzGerald, C.J. Pierce, J.L.C. Rowsell, E.D. Bloch, J.A. Mason, Highly selective quantum sieving of D2 from H2 by a metal-organic framework as determined by gas manometry and infrared spectroscopy, J. Am. Chem. Soc. 135 (25) (2013) 9458–9464. [51] D.H. Liu, W.J. Wang, J.G. Mi, C.L. Zhong, Q.Y. Yang, D. Wu, Quantum sieving in metal–organic frameworks: a computational study, Ind. Eng. Chem. Res. 51 (1) (2012) 434–442. [52] H. Oh, K.S. Park, S.B. Kalidindi, R.A. Fischer, M. Hirscher, Quantum cryo-sieving for hydrogen isotope separation in microporous frameworks: an experimental study on the correlation between effective quantum sieving and pore size, J. Mater. Chem. A 1 (10) (2013) 3244. [53] J. Perez-Carbajo, J.B. Parra, C.O. Ania, P.J. Merkling, S. Calero, Molecular sieves for the separation of hydrogen isotopes, ACS Appl. Mater. Interfaces 11 (20) (2019) 18833–18840. [54] Y. Hattori, H. Tanaka, F. Okino, H. Touhara, Y. Nakahigashi, S. Utsumi, H. Kanoh, K. Kaneko, Quantum sieving effect of modified activated carbon fibers on H2 and D2 adsorption at 20 K, J Phys Chem B 110 (20) (2006) 9764–9767. |