[1] C. Carletti, G. Montante, T. Westerlund, A. Paglianti, Analysis of solid concentration distribution in dense solid–liquid stirred tanks by electrical resistance tomography, Chem. Eng. Sci. 119 (2014) 53–64. [2] S. Wang, R. Parthasarathy, J. Wu, P. Slatter, Optimum solids concentration in an agitated vessel, Ind. Eng. Chem. Res. 53 (10) (2014) 3959–3973. [3] J. Wu, Y. Zhu, P.C. Bandopadhayay, L. Pullum, I.C. Shepherd, Solids suspension with axial-flow impellers, AIChE J. 46 (3) (2000) 647–650. [4] J. Wu, Y.G. Zhu, L. Pullum, Suspension of high concentration slurry, AIChE J. 48 (6) (2002) 1349–1352. [5] J. Wu, S. Wang, L. Graham, R. Parthasarathy, B. Nguyen, High solids concentration agitation for minerals process intensification, AIChE J. 57 (9) (2011) 2316–2324. [6] S. Wang, R. Parthasarathy, E.Y. Bong, J. Wu, P. Slatter, Suspension of ultrahigh concentration solids in an agitated vessel, AIChE J. 58 (4) (2012) 1291–1298. [7] G.R. Drewer, N. Ahmed, G.J. Jameson, Suspension of high concentration solids in mechanically stirred vessels. IChemE Symp. Ser. No., 136 (41) (1994). [8] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of solid particle distribution, Chem. Eng. J. 223 (2013) 875–890. [9] R. Alcamo, G. Micale, F. Grisafi, A. Brucato, M. Ciofalo, Large-eddy simulation of turbulent flow in an unbaffled stirred tank driven by a Rushton turbine, Chem. Eng. Sci. 60 (8–9) (2005) 2303–2316. [10] O. Khazam, S.M. Kresta, A novel geometry for solids drawdown in stirred tanks, Chem. Eng. Res. Des. 87 (3) (2009) 280–290. [11] A.K. Pukkella, R. Vysyaraju, V. Tammishetti, B. Rai, S. Subramanian, Improved mixing of solid suspensions in stirred tanks with interface baffles: CFD simulation and experimental validation, Chem. Eng. J. 358 (2019) 621–633. [12] Y.Y. Shen, B. Qin, X. Li, Z.Y. Zhu, P.Z. Cui, J. Gao, Y.L. Wang, Investigation of the flow characteristics of liquid–liquid two-phase mixing in an agitator equipped with a “V-shaped” horizontal baffle, Environ. Dev. Sustain. 23 (2) (2021) 2298–2313. [13] E.L. Paul, V.A. Atiemo-Obeng, S.M. Kresta, Handbook of Industrial Mixing, John Wiley & Sons Inc. New York (2003) 639–753. [14] W.M. Lu, H.Z. Wu, M.Y. Ju, Effects of baffle design on the liquid mixing in an aerated stirred tank with standard Rushton turbine impellers, Chem. Eng. Sci. 52 (21–22) (1997) 3843–3851. [15] A.L. Eken, M. Sahin, A parallel monolithic algorithm for the numerical simulation of large-scale fluid structure interaction problems, Int. J. Numer. Meth. Fluids 80 (12) (2016) 687–714. [16] X.X. Duan, X. Feng, C. Peng, C. Yang, Z.S. Mao, Numerical simulation of micro-mixing in gas–liquid and solid–liquid stirred tanks with the coupled CFD-E-model, Chin. J. Chem. Eng. 28 (9) (2020) 2235–2247. [17] Y.Y. Liang, Z.M. Gao, D.E. Shi, W.L. Zhao, Z.Q. Cai, Coupling simulation of fluid structure interaction in the stirred vessel with a pitched blade turbine, Chin. J. Chem. Eng. 26 (5) (2018) 922–929. [18] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of suspension curves, Chem. Eng. J. 178 (2011) 324–341. [19] A. Tamburini, A. Cipollina, G. Micale, A. Brucato, M. Ciofalo, CFD simulations of dense solid–liquid suspensions in baffled stirred tanks: Prediction of the minimum impeller speed for complete suspension, Chem. Eng. J. 193-194 (2012) 234–255. [20] D.Y. Gu, X.H. Shi, Z.H. Liu, Intensification on drawdown process of floating particles by circle package fractal impellers, J. Taiwan Inst. Chem. Eng. 106 (2020) 62–73. [21] D.Y. Gu, M. Ye, X.M. Wang, Z.H. Liu, Numerical investigation on mixing characteristics of floating and sinking particles in a stirred tank with fractal impellers, J. Taiwan Inst. Chem. Eng. 116 (2020) 51–61. [22] D.Y. Gu, C. Cheng, Z.H. Liu, Y.D. Wang, Numerical simulation of solid–liquid mixing characteristics in a stirred tank with fractal impellers, Adv. Powder Technol. 30 (10) (2019) 2126–2138. [23] D.Y. Gu, Z.H. Liu, F.C. Qiu, J. Li, C.Y. Tao, Y.D. Wang, Design of impeller blades for efficient homogeneity of solid–liquid suspension in a stirred tank reactor, Adv. Powder Technol. 28 (10) (2017) 2514–2523. [24] D.Y. Gu, Z.H. Liu, Z.M. Xie, J. Li, C.Y. Tao, Y.D. Wang, Numerical simulation of solid–liquid suspension in a stirred tank with a dual punched rigid-flexible impeller, Adv. Powder Technol. 28 (10) (2017) 2723–2734. [25] L. Liu, M. Barigou, Numerical modelling of velocity field and phase distribution in dense monodisperse solid–liquid suspensions under different regimes of agitation: CFD and PEPT experiments, Chem. Eng. Sci. 101 (2013) 837–850. [26] X.K. Li, Multiphase flow and fluidization, continuum and kinetic theory descriptions, J. Non Newton. Fluid Mech. 55 (2) (1994) 207–208. [27] O.P. Klenov, A.S. Noskov, Solid dispersion in the slurry reactor with multiple impellers, Chem. Eng. J. 176-177 (2011) 75–82. [28] S. Hosseini, D. Patel, F. Ein-Mozaffari, M. Mehrvar, Study of solid–liquid mixing in agitated tanks through computational fluid dynamics modeling, Ind. Eng. Chem. Res. 49 (9) (2010) 4426–4435. [29] N.N. Qi, H. Zhang, K. Zhang, G. Xu, Y.P. Yang, CFD simulation of particle suspension in a stirred tank, Particuology 11 (3) (2013) 317–326. [30] J.P. Torré, D.F. Fletcher, T. Lasuye, C. Xuereb, An experimental and computational study of the vortex shape in a partially baffled agitated vessel, Chem. Eng. Sci. 62 (7) (2007) 1915–1926. [31] A. Tamburini, A. Cipollina, G. Micale, M. Ciofalo, A. Brucato, Dense solid–liquid off-bottom suspension dynamics: Simulation and experiment, Chem. Eng. Res. Des. 87 (4) (2009) 587–597. [32] X. Xiong, Z.H. Liu, C.Y. Tao, Y.D. Wang, W.Y. Fei, Study on instability strengthening of flow field in stirred tank, J. Taiwan Inst. Chem. Eng. 134 (2022) 104284. |