[1] U. Fritsching, Spray simulation, second ed. Cambridge University Press, London, UK, 2004128-130. [2] A.H. Lefebvre, Atomization and sprays, fourth ed. Hemisphere Publishing,Washington, US, 1989210-310. [3] E. Babinsky, P.E. Sojka,Modeling droplet size distributions, Prog. Energy Combust. Sci. 28(2002) 303-329. [4] R.W. Sellens, T.A. Brzustowski, A prediction of drop-size distribution in a spray from first principles, Atomization Spray Technol. 1(1985) 89-102. [5] X. Li, R.S. Tankin, Droplet size distribution:A deviation of a Nukiyama-Tanasawa type distribution function, Combust. Sci. Technol. 56(1987) 65-76. [6] R.W. Sellens, Prediction of the drop size and velocity distribution in a spray based on the maximum entropy formalism, Part. Part. Syst. Charact. 6(1989) 17-27. [7] X. Li, R.S. Tankin, Derivation of droplet size distribution in sprays by using information theory, Combust. Sci. Technol. 60(1987) 345-357. [8] C. Dumouchel, The maximum entropy formalism and the prediction of liquid spray drop-size distribution, Entropy 11(2009) 713-747. [9] N. Ashgriz, Handbook of atomization and sprays, Theory and applications, 3th ed. Springer, New York, US 2011, pp. 720-900. [10] H. Liu, Science and engineering of droplets:Fundamentals and applications, materials science and process technology, second ed. William Andrew, Utah, US, 1999250-270. [11] C. Eberhart, D. Lineberry, M. Moser, Experimental cold flow characterization of a swirl coaxial injector element, 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, Colorado 2009, p. 5140. [12] E. Movahednejad, Prediction of size and velocity distribution of droplets in spray by maximum entropy principle and using wave instability, University of Tarbiat Modares, 2010(Doctoral dissertation). [13] K.Y. Huh, E. Lee, J.Y. Koo, Diesel spray atomization model considering nozzle exit turbulence conditions, Atomization Sprays 8(1998) 453-469. [14] E. Movahednejad, F. Ommi, Development of maximum entropy method for prediction of droplet size distribution in primary breakup region of spray, World Acad. Sci. Eng. Technol. 59(2011) 1844-1850. [15] E. Movahednejad, F. Ommi, S.M. Hosseinalipour, et al., Application of maximum entropy method for droplet size distribution prediction using instability analysis of liquid sheet, Heat Mass Transf. 47(2011) 1591-1600. [16] E. Movahednejad, F. Ommi, S.M. Hosseinalipour, Prediction of droplet size and velocity distribution in droplet formation region of liquid spray, Entropy 12(2010) 1484-1498. [17] C.E. Shannon, W. Weaver, The mathematical theory of communication, first ed. University of Illinois Press, Urbana, US, 1949190-250. [18] X. Li, L.P. Chin, R.S. Tankin, et al., Comparison between experiments and predictions based onmaximum entropy for sprays from a pressure atomizer, Combust. Flame 86(1991) 73-89. [19] F.M. White, Viscous fluid flow, second ed. McGrow-Hill, New York, US, 1991381-390. [20] S.M. Hosseinalipour, R. Ghorbani, H. Karimaei, Effect of liquid sheet and gas streams characteristics on the instability of a hollow cone spray using an improved linear instability analysis, Asia Pac. J. Chem. Eng. 11(2016) 24-33. |