[1] E. Paquette, Cooled CMC Structures for Scramjet Engine Flowpath Components, In: 13th International Space Planes and Hypersonics Systems and Technologies Conference, Capua, Italy (2005). [2] T.A. Jackson, D.R. Eklund, A.J. Fink, High speed propulsion: Performance advantage of advanced materials, J. Mater. Sci. 39 (19) (2004) 5905–5913. [3] O.A. Powell, J.T. Edwards, R.B. Norris, K.E. Numbers, J.A. Pearce, Development of hydrocarbon-fueled scramjet engines: The hypersonic technology (HyTech) program, J. Propuls. Power 17 (6) (2001) 1170–1176. [4] S.L. Zhang, X. Li, J.Y. Zuo, J. Qin, K.L. Cheng, Y. Feng, W. Bao, Research progress on active thermal protection for hypersonic vehicles, Prog. Aerosp. Sci. 119 (2020) 100646. [5] A. Chen, L. Dang, Characterization of supercritical JP-7's heat transfer and coking properties, In: 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV. Reston (2002). [6] C. Liang, Y. Wang, S.C. Jiang, Q.Y. Zhang, X.Y. Li, The comprehensive study on hydrocarbon fuel pyrolysis and heat transfer characteristics, Appl. Therm. Eng. 117 (2017) 652–658. [7] P.X. Jiang, J.J. Yan, S. Yan, Z.L. Lu, Y.H. Zhu, Thermal cracking and heat transfer of hydrocarbon fuels at supercritical pressures in vertical tubes, Heat Transf. Eng. 40 (5–6) (2019) 437–449. [8] C.G. Yang, Z.J. Quan, Y. Chen, Q. Zhu, J.L. Wang, X.Y. Li, A comprehensive investigation of the pyrolysis effect on heat transfer characteristics for n-decane in the horizon mini-channel, Energy Fuels 34 (1) (2020) 199–210. [9] Z.J. Jia, H.Y. Huang, W.X. Zhou, F. Qi, M.R. Zeng, Experimental and modeling investigation of n-decane pyrolysis at supercritical pressures, Energy Fuels 28 (9) (2014) 6019–6028. [10] T.A. Ward, J.S. Ervin, R.C. Striebich, S. Zabarnick, Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions, J. Propuls. Power 20 (3) (2004) 394–402. [11] T.A. Ward, J.S. Ervin, S. Zabarnick, L. Shafer, Pressure effects on flowing mildly-cracked n-decane, J. Propuls. Power 21 (2) (2005) 344–355. [12] J. Qin, S.L. Zhang, W. Bao, W.X. Zhou, D.R. Yu, Thermal management method of fuel in advanced aeroengines, Energy 49 (2013) 459–468. [13] Y.H. Zhu, B. Liu, P.X. Jiang, Experimental and numerical investigations on n-decane thermal cracking at supercritical pressures in a vertical tube, Energy Fuels 28 (1) (2014) 466–474. [14] H. Zhou, X.K. Gao, P.H. Liu, Q. Zhu, J.L. Wang, X.Y. Li, Energy absorption and reaction mechanism for thermal pyrolysis of n-decane under supercritical pressure, Appl. Therm. Eng. 112 (2017) 403–412. [15] P.H. Liu, T.H. Zhang, L.X. Zhou, Z.C. Chen, Q. Zhu, J.L. Wang, X.Y. Li, Experimental and numerical analysis on flow characteristics and pyrolysis mechanism of hydrocarbon fuel with a novel online hybrid method, Energy Convers. Manag. 198 (2019) 111817. [16] R.P. Jiang, G.Z. Liu, X.W. Zhang, Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels, Energy Fuels 27 (5) (2013) 2563–2577. [17] Y. Wang, Y. Zhao, C. Liang, Y. Chen, Q.Y. Zhang, X.Y. Li, Molecular-level modeling investigation of n-decane pyrolysis at high temperature, J. Anal. Appl. Pyrolysis 128 (2017) 412–422. [18] Z.Z. Li, H.Y. Wang, K. Jing, L.M. Wang, Y. Li, X.W. Zhang, G.Z. Liu, Kinetics and modeling of supercritical pyrolysis of endothermic hydrocarbon fuels in regenerative cooling channels, Chem. Eng. Sci. 207 (2019) 202–214. [19] W.L. Yu, W.X. Zhou, L. Long, Z.J. Jia, Y.T. He, Effects of different simulation models on pyrolysis performance predictions for regenerative cooling applications, J. Anal. Appl. Pyrolysis 156 (2021) 105136. [20] W. Bao, S.L. Zhang, J. Qin, W.X. Zhou, K.L. Xie, Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management, Energy 67 (2014) 149–161. [21] K.K. Xu, H. Meng, Modeling and simulation of supercritical-pressure turbulent heat transfer of aviation kerosene with detailed pyrolytic chemical reactions, Energy Fuels 29 (7) (2015) 4137–4149. [22] Y. Feng, S.L. Zhang, J. Cao, J. Qin, Y. Cao, H.Y. Huang, Coupling relationship analysis between flow and pyrolysis reaction of endothermic hydrocarbon fuel in view of characteristic time correlation in mini-channel, Appl. Therm. Eng. 102 (2016) 661–671. [23] Y. Feng, Y.G. Jiang, X. Li, S.L. Zhang, J. Qin, Y. Cao, H.Y. Huang, Numerical study on the influences of heat and mass transfers on the pyrolysis of hydrocarbon fuel in mini-channel, Appl. Therm. Eng. 119 (2017) 650–658. [24] Z.Z. Li, Y. Li, X.W. Zhang, G.Z. Liu, Coupling of pyrolysis and heat transfer of supercritical hydrocarbon fuel in rectangular minichannels, Chem. Eng. Sci. 247 (2022) 116924. [25] G.Z. Zhao, W.Y. Song, R.L. Zhang, Effect of pressure on thermal cracking of China RP-3 aviation kerosene under supercritical conditions, Int. J. Heat Mass Transf. 84 (2015) 625–632. [26] X. Li, S.L. Zhang, M. Ye, J. Qin, W. Bao, N.G. Cui, X.Y. Liu, C.Y. Zhou, Effect of enhanced heat transfer structures on the chemical recuperation process of advanced aero-engine, Energy 211 (2020) 118580. [27] Y. Feng, Y. Cao, S.Y. Liu, J. Qin, A.A. Hemeda, Y.B. Ma, The influence of coking on heat transfer in turbulent reacting flow of supercritical hydrocarbon fuels, Int. J. Heat Mass Transf. 144 (2019) 118623. [28] Y. Chen, Z.L. Lei, T.H. Zhang, Q. Zhu, Z.W. Bao, Q.Y. Zhang, X.Y. Li, Flow distribution of hydrocarbon fuel in parallel minichannels heat exchanger, AIChE J. 64 (7) (2018) 2781–2791. [29] Y. Chen, B. Liu, Z.L. Lei, Q.Y. Zhang, Q. Zhu, Z.W. Bao, X.Y. Li, A control method for flow distribution in fuel-cooled plate based on choked flow effect, Appl. Therm. Eng. 142 (2018) 127–137. [30] J.Q. Zhu, K.H. Tao, Z. Tao, L. Qiu, Heat transfer degradation of buoyancy involved convective RP-3 hydrocarbon fuel in vertical tubes with various diameters under supercritical pressure, Appl. Therm. Eng. 163 (2019) 114392. [31] X. Sun, H. Meng, Large eddy simulations and analyses of hydrocarbon fuel heat transfer in vertical upward flows at supercritical pressures, Int. J. Heat Mass Transf. 170 (2021) 120988. [32] X. Sun, H. Meng, Y. Zheng, Asymmetric heating and buoyancy effects on heat transfer of hydrocarbon fuel in a horizontal square channel at supercritical pressures, Aerosp. Sci. Technol. 93 (2019) 105358. [33] F. Sun, Y. Li, B. Sunden, G.N. Xie, The transport and thermodynamic characteristics of thermally oscillating phenomena in a buoyancy-driven supercritical fuel flow, Int. J. Therm. Sci. 159 (2021) 106550. [34] K.K. Xu, X. Sun, H. Meng, Conjugate heat transfer, endothermic fuel pyrolysis and surface coking of aviation kerosene in ribbed tube at supercritical pressure, Int. J. Therm. Sci. 132 (2018) 209–218. [35] K.K. Xu, B. Ruan, H. Meng, Validation and analyses of RANS CFD models for turbulent heat transfer of hydrocarbon fuels at supercritical pressures, Int. J. Therm. Sci. 124 (2018) 212–226. [36] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32 (8) (1994) 1598–1605. [37] D.Y. Peng, D.B. Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fund. 15 (1) (1976) 59–64. [38] T.H. Chung, M. Ajlan, L.L. Lee, K.E. Starling, Generalized multiparameter correlation for nonpolar and polar fluid transport properties, Ind. Eng. Chem. Res. 27 (4) (1988) 671–679. [39] E.N. Fuller, K. Ensley, J.C. Giddings, Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections, J. Phys. Chem. 73 (11) (1969) 3679–3685. [40] S. Takahashi, Preparation of a generalized chart for the diffusion coefficients of gases at high pressures, J. Chem. Eng. Japan 7 (6) (1975) 417–420. [41] T.R. Marrero, E.A. Mason, Gaseous diffusion coefficients, J. Phys. Chem. Ref. Data 1 (1) (1972) 3–118. [42] B. Zappoli, D. Beysens, Y. Garrabos, Heat Transfers and Related Effects in Supercritical Fluids, Springer, Dordrecht, 2015. [43] G. Jaeger, The Ehrenfest classification of phase transitions: Introduction and evolution, Arch. Hist. Exact Sci. 53 (1) (1998) 51–81. [44] T.L. Bergman, A.S. Lavine, F.P. Incropera, D.P. Dewitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York, 2018. [45] Y.Q. Chen, Y. Li, B. Sunden, G.N. Xie, The abnormal heat transfer behavior of supercritical n-decane flowing in a horizontal tube under regenerative cooling for scramjet engines, Appl. Therm. Eng. 167 (2020) 114637. [46] J.D. Jackson, Fluid flow and convective heat transfer to fluids at supercritical pressure, Nucl. Eng. Des. 264 (2013) 24–40. [47] Y.L. Cui, New analytical method for single-phase convective heat transfer and unified mechanism analyses on buoyancy-induced supercritical convective heat transfer deterioration, Int. J. Heat Mass Transf. 146 (2020) 118871. |