[1] R. Benzi, E.S.C. Ching, Polymers in fluid flows, Annu. Rev. Conden. Ma. P. 9 (2018) 163-181. [2] B. Yang, J.Z. Zhao, J.C. Mao, H.Z. Tan, Y. Zhang, Z.F. Song, Review of friction reducers used in slickwater fracturing fluids for shale gas reservoirs, J. Nat. Gas Sci. Eng. 62 (2019) 302–313. [3] E.J. Soares, Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows, J. Non Newton. Fluid Mech. 276 (2020) 104225. [4] A.M. Fsadni, J.P.M. Whitty, M.A. Stables, A brief review on frictional pressure drop reduction studies for laminar and turbulent flow in helically coiled tubes, Appl. Therm. Eng. 109 (2016) 334–343. [5] L.X. Cheng, D. Mewes, A. Luke, Boiling phenomena with surfactants and polymeric additives: A state-of-the-art review, Int. J. Heat Mass Transf. 50 (13–14) (2007) 2744–2771. [6] M.M. Wu, G.G. Shi, W.M. Liu, Y.F. Long, P. Mu, J. Li, A universal strategy for the preparation of dual superlyophobic surfaces in oil–water systems, ACS Appl. Mater. Interfaces 13 (12) (2021) 14759–14767. [7] G.V. Reddy, R.P. Singh, Drag reduction effectiveness and shear stability of polymer-polymer and polymer-fibre mixtures in recirculatory turbulent flow of water, Rheol. Acta 24 (3) (1985) 296–311. [8] A. Eshghinejadfard, K. Sharma, D. Thévenin, Effect of polymer and fiber additives on pressure drop in a rectangular channel, J. Hydrodyn. Ser. B 29 (5) (2017) 871–878. [9] C. Marchioli, M. Campolo, Drag reduction in turbulent flows by polymer and fiber additives, KONA Powder Part. J. 38 (2021) 64–81. [10] H. Chen, H.Z. Liu, S. Zhang, Y.J. Feng, Smart thermoviscosifying polymer for improving drag reduction in slick-water hydrofracking, Fuel 278 (2020) 118408. [11] H.J. Shashank, K.R. Sreenivas, Effect of polymer solutions on the propagation and structure of freely translating vortex rings, Chem. Eng. Sci. 228 (2020) 115961. [12] A.D.N. Celestine, V. Agrawal, B. Runnels, Experimental and numerical investigation into mechanical degradation of polymers, Compos. B Eng. 201 (2020) 108369. [13] W.L. Lai, H. Saeedipour, K.L. Goh, Mechanical properties of low-velocity impact damaged carbon fibre reinforced polymer laminates: Effects of drilling holes for resin-injection repair, Compos. Struct. 235 (2020) 111806. [14] S.Q. Yang, D.H. Ding, Drag reduction induced by polymer in turbulent pipe flows, Chem. Eng. Sci. 102 (2013) 200–208. [15] X. Zhang, X.D. Dai, J.S. Zhao, D.W. Jing, F. Liu, L. Li, Y.P. Xin, K. Liu, Precise prediction of the drag reduction efficiency of polymer in turbulent flow considering diameter effect, Phys. Fluids 33 (9) (2021) 095124. [16] S.S. Alsaedi, Z.Y. Shnain, M.K. Rashed, P. Filip, Triple solutions of nanoparticle plus polymer-surfactant compound for enhancing the drag reduction using a rotational disk apparatus, IOP Conf. Ser.: Mater. Sci. Eng. 881 (1) (2020) 012079. [17] Y.L. Chai, X.W. Li, J.F. Geng, J.X. Pan, Y.L. Huang, D.W. Jing, Mechanistic study of drag reduction in turbulent pipeline flow over anionic polymer and surfactant mixtures, Colloid Polym. Sci. 297 (7–8) (2019) 1025–1035. [18] J.T. Jiang, X. Kang, H.R. Wu, Y. Lu, Z. Li, D.R. Xu, T. Ma, H.B. Yang, W.L. Kang, Spontaneous emulsification induced by a novel surfactant-polymer compound system and its application to enhance oil recovery, J. Mol. Liq. 337 (2021) 116399. [19] E. Weißenborn, J. Droste, M. Hardt, D. Schlattmann, C. Tennagen, C. Honnigfort, M. Schönhoff, M.R. Hansen, B. Braunschweig, Light-induced switching of polymer-surfactant interactions enables controlled polymer thermoresponsive behaviour, Chem. Commun. 57 (47) (2021) 5826–5829. [20] Y.Q. Gu, S.W. Yu, J.G. Mou, D.H. Wu, S.H. Zheng, Research progress on the collaborative drag reduction effect of polymers and surfactants, Materials (Basel) 13 (2) (2020) 444. [21] K.Q. Zhang, N. Jia, S.Y. Li, L.R. Liu, How surfactant-decorated nanoparticles contribute to thermodynamic miscibility, Nanotechnology 29 (47) (2018) 475701. [22] J.Y. Jin, X.Y. Li, J.F. Geng, D.W. Jing, Insights into the complex interaction between hydrophilic nanoparticles and ionic surfactants at the liquid/air interface, Phys. Chem. Chem. Phys. 20 (22) (2018) 15223–15235. [23] Q.W. Tang, Z.Y. Huang, B.G. Wang, H.S. Lu, Surfactant-free aqueous foams stabilized with synergy of xanthan-based amphiphilic biopolymer and nanoparticle as potential hydraulic fracturing fluids, Colloids Surf. A Physicochem. Eng. Aspects 603 (2020) 125215. [24] T. Lin, H.X. Wang, H.M. Wang, X.G. Wang, The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene, Nanotechnology 15 (9) (2004) 1375–1381. [25] H. Divandari, A. Hemmati-Sarapardeh, M. Schaffie, M. Ranjbar, Integrating functionalized magnetite nanoparticles with low salinity water and surfactant solution: Interfacial tension study, Fuel 281 (2020) 118641. [26] M. Latikka, M. Backholm, A. Baidya, A. Ballesio, A. Serve, G. Beaune, J.V.I. Timonen, T. Pradeep, R.H.A. Ras, Ferrofluid microdroplet splitting for population-based microfluidics and interfacial tensiometry, Adv. Sci. 7 (14) (2020) 2000359. [27] Y.L. Wang, J.F. Jin, L. Ma, L. Li, X. Zhao, Influence of wettability alteration to preferential gas-wetting on displacement efficiency at elevated temperatures, J. Dispers. Sci. Technol. 36 (9) (2015) 1274–1281. [28] J.F. Jin, Y.L. Wang, T.A.H. Nguyen, A.V. Nguyen, M.Z. Wei, B.J. Bai, The effect of gas-wetting nano-particle on the fluid flowing behavior in porous media, Fuel 196 (2017) 431–441. [29] N. Pal, A. Mandal, Numerical simulation of enhanced oil recovery studies for aqueous gemini surfactant-polymer-nanoparticle systems, AIChE J. 66 (11) (2020) 17020. [30] G. Cheraghian, S.S. Khalili Nezhad, M. Kamari, M. Hemmati, M. Masihi, S. Bazgir, Effect of nanoclay on improved rheology properties of polyacrylamide solutions used in enhanced oil recovery, J. Petroleum Explor. Prod. Technol. 5 (2) (2015) 189–196. [31] A. Steele, I.S. Bayer, E. Loth, Pipe flow drag reduction effects from carbon nanotube additives, Carbon 77 (2014) 1183–1186. [32] M.L. Luo, X.D. Si, M.Z. Li, X.H. Jia, Y.L. Yang, Y.P. Zhan, Experimental study on the drag reduction performance of clear fracturing fluid using wormlike surfactant micelles and magnetic nanoparticles under a magnetic field, Nanomaterials (Basel) 11 (4) (2021) 885. [33] M.E. Rosti, L. Brandt, Increase of turbulent drag by polymers in particle suspensions, Phys. Rev. Fluids 5 (4) (2020) 041301. [34] S.M. Fotukian, M.N. Esfahany, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Commun. Heat Mass Transf. 37 (2) (2010) 214–219. [35] A. Moosaie, N. Shekouhi, N.M. Nouri, M. Manhart, An algebraic closure model for the DNS of turbulent drag reduction by Brownian microfiber additives in a channel flow, J. Non Newton. Fluid Mech. 226 (2015) 60–66. [36] B. Raei, S.M. Peyghambarzadeh, R.S. Asl, Experimental investigation on heat transfer and flow resistance of drag-reducing alumina nanofluid in a fin-and-tube heat exchanger, Appl. Therm. Eng. 144 (2018) 926–936. [37] G.D. Kalaycioglu, D. Yuksel, B. Okmen, N. Aydogan, Interfacial properties and aggregates of novel redox-active surfactant to synthesize silver nanoparticles at the air/water interface, Colloids Surf. A Physicochem. Eng. Aspects 624 (2021) 126759. [38] A.R. Pouranfard, D. Mowla, F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids through horizontal pipe turbulent flow of a Newtonian liquid, J. Ind. Eng. Chem. 20 (2) (2014) 633–637. [39] J.B. Crews, A.M. Gomaa, Nanoparticle-associated surfactant micellar fluids: An alternative to crosslinked polymer systems, In: SPE International Oilfield Nanotechnology Conference, Noordwijk, Netherlands, 2012. [40] S. Paryani, A. Ramazani S A, Investigation of the combination of TiO2 nanoparticles and drag reducer polymer effects on the heat transfer and drag characteristics of nanofluids, Can. J. Chem. Eng. 96 (6) (2018) 1430–1440. [41] J.D. Brassard, D.K. Sarkar, J. Perron, Studies of drag on the nanocomposite superhydrophobic surfaces, Appl. Surf. Sci. 324 (2015) 525–531. [42] T. Sharma, J.S. Sangwai, Silica nanofluids in polyacrylamide with and without surfactant: Viscosity, surface tension, and interfacial tension with liquid paraffin, J. Petroleum Sci. Eng. 152 (2017) 575–585. [43] L. Xing, Y.C. Ke, X. Hu, P. Liang, Preparation and solution properties of polyacrylamide-based silica nanocomposites for drag reduction application, New J. Chem. 44 (23) (2020) 9802–9812. [44] A.S. Pereira, R.M. Andrade, E.J. Soares, Drag reduction induced by flexible and rigid molecules in a turbulent flow into a rotating cylindrical double gap device: Comparison between poly(ethylene oxide), polyacrylamide, and xanthan gum, J. Non Newton. Fluid Mech. 202 (2013) 72–87. [45] T. Rodrigues, F.J. Galindo-Rosales, L. Campo-Deaño, Critical overlap concentration and intrinsic viscosity data of xanthan gum aqueous solutions in dimethyl sulfoxide, Data Brief 33 (2020) 106431. [46] G. Xie, Y. Shen, A study on the rheological properties and viscoelasticity of PAM aqueous solutions, J. Nat. Sci. Heilongjiang Univ. 20 (4) (2003) 89-91. (in Chinese). [47] A.R. Pouranfard, D. Mowla, F. Esmaeilzadeh, An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes, Chin. J. Chem. Eng. 23 (3) (2015) 471–475. [48] D.J. Liu, S. Wang, I. Ivitskiy, J.J. Wei, O.K.C. Tsui, F. Chen, Enhanced drag reduction performance by interactions of surfactants and polymers, Chem. Eng. Sci. 232 (2021) 116336. [49] I. Sher, G. Hetsroni, A mechanistic model of turbulent drag reduction by additives, Chem. Eng. Sci. 63 (7) (2008) 1771–1778. [50] S. Özerinç, S. Kakaç, A.G. Yazıcıoğlu, Enhanced thermal conductivity of nanofluids: A state-of-the-art review, Microfluid. Nanofluid. 8 (2) (2010) 145–170. [51] Z.Y. Liu, F.J. Zhou, H.Y. Qu, Z. Yang, Y.S. Zou, D.B. Wang, Impact of the microstructure of polymer drag reducer on slick-water fracturing, Geofluids 2017 (2017) 9080325. [52] Y. Rabin, B.J. Zielinska, Scale-dependent enhancement and damping of vorticity disturbances by polymers in elongational flow, Phys. Rev. Lett. 63 (5) (1989) 512–515. [53] B. Toms, Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers, In: Proceedings of the First International Congress on Rheology, Amsterdam (1948). [54] P.S. Virk, An elastic sublayer model for drag reduction by dilute solutions of linear macromolecules, J. Fluid Mech. 45 (3) (1971) 417–440. |