[1] X.X. Wei, Z.Y. Zhang, Q.L. Fan, X.Y. Yuan, D.S. Guo, The effect of treatment stages on the coking wastewater hazardous compounds and their toxicity, J. Hazard. Mater. 239-240 (2012) 135–141. [2] J. Ren, J.F. Li, J.G. Li, Z.L. Chen, F.Q. Cheng, Tracking multiple aromatic compounds in a full-scale coking wastewater reclamation plant: Interaction with biological and advanced treatments, Chemosphere 222 (2019) 431–439. [3] Qian Yi, Wen Yibo, Zhang Huiming, Efficacy of pre-treatment methods in the activated sludge removal of refractory compounds in coke-plant wastewater, Water Res. 28 (3) (1994) 701–707. [4] H. Mestankova, A.M. Parker, N. Bramaz, S. Canonica, K. Schirmer, U. von Gunten, K.G. Linden, Transformation of Contaminant Candidate List (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: Assessment of biological effects, Water Res. 93 (2016) 110–120. [5] X.W. Jin, E.C. Li, S.G. Lu, Z.F. Qiu, Q. Sui, Coking wastewater treatment for industrial reuse purpose: Combining biological processes with ultrafiltration, nanofiltration and reverse osmosis, J. Environ. Sci. (China) 25 (8) (2013) 1565–1574. [6] H. Zhu, W.C. Ma, H.J. Han, Y.X. Han, W.W. Ma, Catalytic ozonation of quinoline using nano-MgO: Efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater, Chem. Eng. J. 327 (2017) 91–99. [7] M. Herrero, D.C. Stuckey, Bioaugmentation and its application in wastewater treatment: A review, Chemosphere 140 (2015) 119–128. [8] H. Wu, J. Shen, X. Jiang, X. Liu, X. Sun, J. Li, W. Han, L. Wang, Bioaugmentation strategy for the treatment of fungicide wastewater by two triazole-degrading strains, Chem. Eng. J. 349 (2018) 17-24. [9] X.W. Zhang, Z.J. Song, Q.D. Tang, M.H. Wu, H. Zhou, L.F. Liu, Y.Y. Qu, Performance and microbial community analysis of bioaugmented activated sludge for nitrogen-containing organic pollutants removal, J. Environ. Sci. 101 (2021) 373–381. [10] X.D. Liu, Y. Chen, X. Zhang, X.B. Jiang, S.J. Wu, J.Y. Shen, X.Y. Sun, J.S. Li, L.D. Lu, L.J. Wang, Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater, J. Hazard. Mater. 295 (2015) 153–160. [11] Z.T. Yu, W.W. Mohn, Bioaugmentation with the resin acid-degrading bacterium Zoogloea resiniphila DhA-35 to counteract pH stress in an aerated lagoon treating pulp and paper mill effluent, Water Res. 36 (11) (2002) 2793–2801. [12] S. Saha, N. Badhe, S. Pal, R. Biswas, T. Nandy, Carbon and nutrient-limiting conditions stimulate biodegradation of low concentration of phenol, Biochem. Eng. J. 126 (2017) 40–49. [13] Y.H. Jiang, F.Y. Zhang, S.Q. Xu, P. Yang, X. Wang, X. Zhang, Q. Hong, J.G. Qiu, C.W. Chu, J. He, Biodegradation of quinoline by a newly isolated salt-tolerating bacterium rhodococcus gordoniae strain JH145, Microorganisms 10 (4) (2022) 797. [14] S.N. Zhu, D.Q. Liu, L. Fan, J.R. Ni, Degradation of quinoline by Rhodococcus sp. QL2 isolated from activated sludge, J. Hazard. Mater. 160 (2–3) (2008) 289–294. [15] L. Qiao, J.L. Wang, Biodegradation characteristics of quinoline by pseudomonas putida, Bioresour. Technol. 101 (19) (2010) 7683–7686. [16] P.Y. Wang, H. Chen, Y. Wang, Y.K. Lyu, Quinoline biodegradation characteristics of a new quinoline-degrading strain, Pseudomonas citronellolis PY1, J. Chem. Technol. Biotechnol. 95 (8) (2020) 2171–2179. [17] Y.H. Bai, Q.H. Sun, C. Zhao, D.H. Wen, X.Y. Tang, Quinoline biodegradation and its nitrogen transformation pathway by a Pseudomonas sp. strain, Biodegradation 21 (3) (2010) 335–344. [18] L. Wang, Y.M. Li, J.Y. Duan, Biodegradation of 2-methylquinoline by Enterobacter aerogenes TJ-D isolated from activated sludge, J. Environ. Sci. (China) 25 (7) (2013) 1310–1318. [19] M.C. Cui, F.Z. Chen, J.M. Fu, G.Y. Sheng, G.P. Sun, Microbial metabolism of quinoline by comamonas sp, World J. Microbiol. Biotechnol. 20 (6) (2004) 539–543. [20] Y. Wang, H. Chen, Y.X. Liu, R.P. Ren, Y.K. Lv, An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater, Bioresour. Technol. 211 (2016) 711–719. [21] Y.H. Bai, Q.H. Sun, C. Zhao, D.H. Wen, X.Y. Tang, Bioaugmentation treatment for coking wastewater containing pyridine and quinoline in a sequencing batch reactor, Appl. Microbiol. Biotechnol. 87 (5) (2010) 1943–1951. [22] Y.H. Bai, Q.H. Sun, R.H. Sun, D.H. Wen, X.Y. Tang, Bioaugmentation and adsorption treatment of coking wastewater containing pyridine and quinoline using zeolite-biological aerated filters, Environ. Sci. Technol. 45 (5) (2011) 1940–1948. [23] X.W. Zhang, Y.Y. Qu, S.N. You, Q. Ma, H. Zhou, L.Z. Zhang, L.H. Zhang, J.W. Jing, L.F. Liu, Bioremediation of nitrogen-containing organic pollutants using phenol-stimulated activated sludge: Performance and microbial community analysis, J. Chem. Technol. Biotechnol. 93 (11) (2018) 3199–3207. [24] J.X. Shi, Y.X. Han, C.Y. Xu, H.J. Han, Enhanced anaerobic degradation of selected nitrogen heterocyclic compounds with the assistance of carboxymethyl cellulose, Sci. Total Environ. 689 (2019) 781–788. [25] J.X. Shi, M.Q. Zheng, Z.W. Zhang, H.J. Han, C.Y. Xu, Enhanced biodegradation of quinoline and indole with a novel symbiotic system of Polyurethane-chlorella-bacteria, J. Water Process. Eng. 37 (2020) 101525. [26] Q. Ma, Y.Y. Qu, W.L. Shen, Z.J. Zhang, J.W. Wang, Z.Y. Liu, D.X. Li, H.J. Li, J.T. Zhou, Bacterial community compositions of coking wastewater treatment plants in steel industry revealed by Illumina high-throughput sequencing, Bioresour. Technol. 179 (2015) 436–443. [27] F.M. Ibarbalz, E.L.M. Figuerola, L. Erijman, Industrial activated sludge exhibit unique bacterial community composition at high taxonomic ranks, Water Res. 47 (11) (2013) 3854–3864. [28] S.Y. Jia, H.J. Han, H.F. Zhuang, B.L. Hou, The pollutants removal and bacterial community dynamics relationship within a full-scale British Gas/Lurgi coal gasification wastewater treatment using a novel system, Bioresour. Technol. 200 (2016) 103–110. [29] J.X. Shi, Y.X. Han, C.Y. Xu, H.J. Han, Anaerobic bioaugmentation hydrolysis of selected nitrogen heterocyclic compound in coal gasification wastewater, Bioresour. Technol. 278 (2019) 223–230. [30] P. Larsen, J.L. Nielsen, D. Otzen, P.H. Nielsen, Amyloid-like adhesins produced by floc-forming and filamentous bacteria in activated sludge, Appl. Environ. Microbiol. 74 (5) (2008) 1517–1526. [31] Y. An, M.Y. Wang, Z. Zhou, X. Sun, C. Cheng, S.M. Zhu, L.C. Wang, Z.C. Wu, Enhancing biodegradability of industrial park wastewater by packing carriers and limited aeration in the hydrolysis process, J. Clean. Prod. 264 (2020) 121638. [32] Y.T. Guo, E.R. Rene, J.J. Wang, W.F. Ma, Biodegradation of polyaromatic hydrocarbons and the influence of environmental factors during the co-composting of sewage sludge and green forest waste, Bioresour. Technol. 297 (2020) 122434. [33] X. Mei, Y. Wang, Y. Yang, L. Xu, Y. Wang, Z. Guo, W. Shen, Z. Zhang, M. Ma, Y. Ding, Y. Xiao, X. Yang, C. Yin, W. Guo, K. Xu, C. Wang, Enhanced treatment of nitroaniline-containing wastewater by a membrane-aerated biofilm reactor: Simultaneous nitroaniline degradation and nitrogen removal, Sep. Purif. Technol. 248 (2020) 117078. [34] C.L.S. Vilela, R.S. Peixoto, C.T.C.D.C. Rachid, J.P. Bassin, Assessing the impact of synthetic estrogen on the microbiome of aerated submerged fixed-film reactors simulating tertiary sewage treatment and isolation of estrogen-degrading consortium, Sci Total Environ 743 (2020) 140428. [35] X.M. Zhang, X.F. Hua, X.P. Yue, Comparison of bacterial community characteristics between complete and shortcut denitrification systems for quinoline degradation, Appl. Microbiol. Biotechnol. 101 (4) (2017) 1697–1707. [36] K. Li, J.X. Shi, Y.X. Han, C.Y. Xu, H.J. Han, Enhanced anaerobic degradation of quinoline, pyriding, and indole with polyurethane (PU), Fe3O4@PU, powdered activated carbon (PAC), Fe(OH)3@PAC, biochar, and Fe(OH)3@biochar and analysis of microbial succession in different reactors, Bioresour. Technol. 291 (2019) 121866. [37] X. Zhang, S. Yue, H. Zhong, W. Hua, R. Chen, Y. Cao, L. Zhao, A diverse bacterial community in an anoxic quinoline-degrading bioreactor determined by using pyrosequencing and clone library analysis, Appl. Microbiol. Biotechnol. 91 (2011) 425-434. [38] Y.J. Gao, X. Kong, A.J. Zhou, X.P. Yue, Y.H. Luo, Z. Defemur, Enhanced degradation of quinoline by coupling microbial electrolysis cell with anaerobic digestion simultaneous, Bioresour. Technol. 306 (2020) 123077. [39] H.J. Feng, Y.F. Wang, X.Q. Zhang, D.S. Shen, N. Li, W. Chen, B. Huang, Y.X. Liang, Y.Y. Zhou, Degradation of p-fluoronitrobenzene in biological and bioelectrochemical systems: Differences in kinetics, pathways, and microbial community evolutions, Chem. Eng. J. 314 (2017) 232–239. [40] X.M. Su, Y.Y. Wang, B.B. Xue, Y.G. Zhang, R.W. Mei, Y. Zhang, M.Z. Hashmi, H.J. Lin, J.R. Chen, F.Q. Sun, Resuscitation of functional bacterial community for enhancing biodegradation of phenol under high salinity conditions based on Rpf, Bioresour. Technol. 261 (2018) 394–402. [41] C. Ramos, M.E. Suárez-Ojeda, J. Carrera, Long-term performance and stability of a continuous granular airlift reactor treating a high-strength wastewater containing a mixture of aromatic compounds, J. Hazard. Mater. 303 (2016) 154–161. [42] E.A. Barnsley, Metabolism of 2, 6-dimethylnaphthalene by flavobacteria, Appl. Environ. Microbiol. 54 (2) (1988) 428–433. [43] A.L. Juhasz, R. Naidu, Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: A review of the microbial degradation of benzo[a]pyrene, Int. Biodeterior. Biodegrad. 45 (1–2) (2000) 57–88. [44] Y.H. Luo, X.P. Yue, P. Wei, A.J. Zhou, X. Kong, S. Alimzhanova, A state-of-the-art review of quinoline degradation and technical bottlenecks, Sci. Total. Environ. 747 (2020) 141136. [45] Y. Wang, H. Tian, F. Huang, W.M. Long, Q.P. Zhang, J. Wang, Y. Zhu, X.G. Wu, G.Z. Chen, L.P. Zhao, L.R. Bakken, Å. Frostegård, X.J. Zhang, Time-resolved analysis of a denitrifying bacterial community revealed a core microbiome responsible for the anaerobic degradation of quinoline, Sci. Rep. 7 (2017) 14778. [46] P.A. Willumsen, J.E. Johansen, U. Karlson, B.M. Hansen, Isolation and taxonomic affiliation of N-heterocyclic aromatic hydrocarbon-transforming bacteria, Appl. Microbiol. Biotechnol. 67 (3) (2005) 420–428. [47] T.O. Olowomofe, J.O. Oluyege, B.I. Aderiye, O.A. Oluwole, Degradation of poly aromatic fractions of crude oil and detection of catabolic genes in hydrocarbon-degrading bacteria isolated from Agbabu bitumen sediments in Ondo State, AIMS Microbiol. 5 (4) (2019) 308–323. [48] M.X. Guo, Z.Q. Gong, R.H. Miao, C.Y. Jia, J. Rookes, D. Cahill, J. Zhuang, Enhanced polycyclic aromatic hydrocarbons degradation in rhizosphere soil planted with tall fescue: Bacterial community and functional gene expression mechanisms, Chemosphere 212 (2018) 15–23. [49] M.Q. Zheng, H.J. Han, J.X. Shi, Z.W. Zhang, W.C. Ma, C.Y. Xu, Metagenomic analysis of aromatic ring-cleavage mechanism in nano-Fe3O4@activated coke enhanced bio-system for coal pyrolysis wastewater treatment, J. Hazard. Mater. 414 (2021) 125387. [50] D. R. Joshi, Y. Zhang, H. Zhang, Y. Gao, M. Yang, Characteristics of microbial community functional structure of a biological coking wastewater treatment system, J. Environ. Sci. (China) 63 (2018) 105-115. [51] D.R. Joshi, Y. Zhang, Y. Gao, Y. Liu, M. Yang, Biotransformation of nitrogen- and sulfur-containing pollutants during coking wastewater treatment: Correspondence of performance to microbial community functional structure, Water Res. 121 (2017) 338–348. [52] F. Forouhar, J. L. R. Anderson, C. G. Mowat, S. M. Vorobiev, A. Hussain, M. Abashidze, C. Bruckmann, S. J. Thackray, J. Seetharaman, T. Tucker, R. Xiao, L.-C. Ma, L. Zhao, T. B. Acton, G. T. Montelione, S. K. Chapman, L. Tong, Molecular insights into substrate recognition and catalysis by tryptophan 2,3-dioxygenase, Proc. Natl. Acad. Sci. 104 (2007) 473-478. [53] J.J. Wei, Y.J. Wang, X.Y. Li, X. Zhang, Y.J. Liu, Mechanistic insights into pyridine ring degradation catalyzed by 2, 5-dihydroxypyridine dioxygenase NicX, Inorg. Chem. 61 (5) (2022) 2517–2529. |