[1] A.Q. Wang, T. Zhang, One-pot conversion of cellulose to ethylene glycol with multifunctional tungsten-based catalysts, Acc. Chem. Res., 46 (7) (2013) 1377-1386. [2] D. Arntz, T. Haas, A. Schafer-Sindlinger, Process for the preparation of 1,3-propanediol by the hydrogenation of hydroxypropionaldehyde, US Pat. 5364984 (1994). [3] M. Shu, C. Shi, J. Yu, X. Chen, C.H. Liang, R. Si, Efficient selective hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol by silicon carbide supported platinum catalyst, Catal. Sci. Technol., 10 (2) (2020) 327-331. [4] H. Thomas, Y.U. Dahai, S. Jorg, A. Dietrichus, F. Andreas, T. Thomas, Process for the production of 1,3-propanediol by hydrogenating 3-hydroxypropionaldehyde, US Pat. 6232511 (2001). [5] F. Codignola, Process for the catalytic hydrogenation of 1-4-butynediol to 1-4 butanediol, US Pat. 4438285 (1984). [6] R.V. Chaudhari, C.V. Rode, R. Jaganathan, M.M. Telkar, V.H. Rane, Process for the conversion of 1, 4 butynediol to 1, 4 butanediol, or a mixture of 1, 4 butenediol and 1,4 butanediol, US Pat. 6469221 (2002). [7] E. Joannet, L. Kiwi-Minsker, A. Renken, Structured Pd/C-catalysts for the selective liquid phase hydrogenation of 2-butyne-1,4-diol to 2-butene-1,4-diol, Chem. Eng. Sci., 57 (16) (2003) 3453-3460. [8] T. Haas, B. Jaeger, R. Weber, S.F. Mitchell, C.F. King, New diol processes: 1,3-propanediol and 1,4-butanediol, Appl. Catal. A-Gen., 280 (1) (2005) 83-88. [9] T. Haas, G. Bohme, D. Arntz, Process for the prepartion of 3-hydroxyalkanals, US Pat. 5284979 (1994). [10] X. Chen, M.M. Zhang, K.X. Yang, C.T. Williams, C.H. Liang, Raney Ni-Si catalysts for selective hydrogenation of highly concentrated 2-butyne-1,4-diol to 2-butene-1,4-diol, Catal. Lett., 144 (7) (2014) 1118-1126. [11] L.J. Li, W.J. Yi, T.W. Liu, C. Huang, Z.S. Chao, Hydrogenation of 3-hydroxypropanal into 1,3-propanediol over bimetallic Ru-Ni catalyst, RSC Adv., 7 (51) (2017) 32027-32037. [12] L.J. Li, W.J. Yi, T.W. Liu, C. Huang, A. Li, C.W. Luo, Z.S. Chao, Hydrogenation of 3-hydroxypropanal to 1,3-propanediol over a Cu-V/Ni/SiO2 catalyst, New J. Chem., 41 (17) (2017) 8965-8976. [13] H.R. Yue, Y.J. Zhao, X.B. Ma, J.L. Gong, Ethylene glycol: properties, synthesis, and applications, Chem. Soc. Rev., 41 (11) (2012) 4218-4244. [14] J.W. van Hal, J.S. Ledford, X. Zhang, Investigation of three types of catalysts for the hydration of ethylene oxide (EO) to monoethylene glycol (MEG), Catal. Today, 123 (1-4) (2007) 310-315. [15] D.W. Yao, Y. Wang, Y. Li, Y.J. Zhao, J. Lv, X.B. Ma, A high-performance nanoreactor for carbon-oxygen bond hydrogenation reactions achieved by the morphology of nanotube-assembled hollow spheres, ACS Catal., 8 (2) (2018) 1218-1226. [16] G. Xu, A.Q. Wang, J.F. Pang, X.C. Zhao, J.M. Xu, N. Lei, J. Wang, M.Y. Zheng, J.Z. Yin, T. Zhang, Chemocatalytic conversion of cellulosic biomass to methyl glycolate, ethylene glycol, and ethanol, ChemSusChem, 10 (7) (2017) 1390-1394. [17] D.W. Chu, Z.C. Luo, Y.Y. Xin, C.Z. Jiang, S.F. Gao, Z.H. Wang, C. Zhao, One-pot hydrogenolysis of cellulose to bioethanol over Pd-Cu-WOx/SiO2 catalysts, Fuel, 292 (2021) 120311. [18] M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X.X. Huang, R. Silva, X.X. Zou, R. Zboril, R.S. Varma, Cu and Cu-based nanoparticles: Synthesis and applications in catalysis, Chem. Rev., 116 (6) (2016) 3722-3811. [19] M. Gupta, M.L. Smith, J.J. Spivey, Heterogeneous catalytic conversion of dry syngas to ethanol and higher alcohols on Cu-based catalysts, ACS Catal., 1 (6) (2011) 641-656. [20] X.Q. Dong, J.W. Lei, Y.F. Chen, H.X. Jiang, M.H. Zhang, Selective hydrogenation of acetic acid to ethanol on Cu-In catalyst supported by SBA-15, Appl. Catal. B-Environ., 244 (2019) 448-458. [21] S. Sitthisa, T. Sooknoi, Y. Ma, P.B. Balbuena, D.E. Resasco, Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts, J. Catal., 277 (1) (2011) 1-13. [22] X.Y. Zhou, Z.P. Feng, W.W. Guo, J.M. Liu, R.Y. Li, R.Z. Chen, J. Huang, Hydrogenation and hydrolysis of furfural to furfuryl alcohol, cyclopentanone, and cyclopentanol with a heterogeneous copper catalyst in water, Ind. Eng. Chem. Res., 58 (10) (2019) 3988-3993. [23] B. Wang, Y.Y. Cui, C. Wen, X. Chen, Y. Dong, W.L. Dai, Role of copper content and calcination temperature in the structural evolution and catalytic performance of Cu/P25 catalysts in the selective hydrogenation of dimethyl oxalate, Appl. Catal. A-Gen., 509 (2016) 66-74. [24] N. Siddiqui, R. Khatun, V.K. Mishra, T.S. Khan, C. Samanta, R. Bal, Selective transfer hydrogenation of biomass derived furanic molecules using cyclohexanol as a hydrogen donor over nanostructured Cu/MgO catalyst, Mol. Catal., 513 (2021) 111812. [25] M. Abbas, Z. Chen, J. Chen, Shape- and size-controlled synthesis of Cu nanoparticles wrapped on RGO nanosheet catalyst and their outstanding stability and catalytic performance in the hydrogenation reaction of dimethyl oxalate, J. Mater. Chem. A, 6 (39) (2018) 19133-19142. [26] Y.F. Zhu, X. Kong, D.B. Cao, J.L. Cui, Y.L. Zhu, Y.W. Li, The rise of calcination temperature enhances the performance of Cu catalysts: Contributions of support, ACS Catal., 4 (10) (2014) 3675-3681. [27] I. Kasatkin, P. Kurr, B. Kniep, A. Trunschke, R. Schlogl, Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis, Angew. Chem. Int. Ed. Engl., 46 (38) (2007) 7324-7327. [28] Y.F. Zhu, X. Kong, X.Q. Li, G.Q. Ding, Y.L. Zhu, Y.W. Li, Cu nanoparticles inlaid mesoporous Al2O3 as a high-performance bifunctional catalyst for ethanol synthesis via dimethyl oxalate hydrogenation, ACS Catal., 4 (10) (2014) 3612-3620. [29] J.L. Gong, H.R. Yue, Y.J. Zhao, S. Zhao, L. Zhao, J. Lv, S.P. Wang, X.B. Ma, Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites, J. Am. Chem. Soc., 134 (34) (2012) 13922-13925. [30] Y. Wang, Y.L. Shen, Y.J. Zhao, J. Lv, S.P. Wang, X.B. Ma, Insight into the balancing effect of active Cu species for hydrogenation of carbon-oxygen bonds, ACS Catal., 5 (10) (2015) 6200-6208. [31] C.C. Tu, Y.J. Tsou, T.D. To, C.H. Chen, J.F. Lee, G.W. Huber, Y.C. Lin, Phyllosilicate-derived CuNi/SiO2 catalysts in the selective hydrogenation of adipic acid to 1,6-hexanediol, ACS Sustain. Chem. Eng., 7 (21) (2019) 17872-17881. [32] X.H. Dong, X.G. Ma, H.Y. Xu, Q.J. Ge, Comparative study of silica-supported copper catalysts prepared by different methods: formation and transition of copper phyllosilicate, Catal. Sci. Technol., 6 (12) (2016) 4151-4158. [33] D. Brands, Ester hydrogenolysis over promoted Cu/SiO2 catalysts, Appl. Catal. A-Gen., 184 (2) (1999) 279-289. [34] S. Chen, P.M. de Souza, C. Ciotonea, M. Marinova, F. Dumeignil, S. Royer, R. Wojcieszak, Micro-/mesopores confined ultrasmall Cu nanoparticles in SBA-15 as a highly efficient and robust catalyst for furfural hydrogenation to furfuryl alcohol, Appl. Catal. A-Gen., 633 (2022) 118527. [35] Z.Q. Wang, Z.N. Xu, S.Y. Peng, M.J. Zhang, G. Lu, Q.S. Chen, Y.M. Chen, G.C. Guo, High-performance and long-lived Cu/SiO2 nanocatalyst for CO2 hydrogenation, ACS Catal., 5 (7) (2015) 4255-4259. [36] L.F. Chen, P.J. Guo, M.H. Qiao, S.R. Yan, H.X. Li, W. Shen, H.L. Xu, K.N. Fan, Cu/SiO2 catalysts prepared by the ammonia-evaporation method: Texture, structure, and catalytic performance in hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal., 257 (1) (2008) 172-180. [37] T. Toupance, M. Kermarec, J.F. Lambert, C. Louis, Conditions of formation of copper phyllosilicates in silica-supported copper catalysts prepared by selective adsorption, J. Phys. Chem. B, 106 (9) (2002) 2277-2286. [38] Z. He, H.Q. Lin, P. He, Y.Z. Yuan, Effect of boric oxide doping on the stability and activity of a Cu-SiO2 catalyst for vapor-phase hydrogenation of dimethyl oxalate to ethylene glycol, J. Catal., 277 (1) (2011) 54-63. [39] V. Gutiérrez, F. Nador, G. Radivoy, M.A. Volpe, Highly selective copper nanoparticles for the hydrogenation of α,β-unsaturated aldehydes in liquid phase, Appl. Catal. A-Gen., 464-465 (2013) 109-115. [40] A.J. Marchi, J.L.G. Fierro, J. Santamaría, A. Monzón, Dehydrogenation of isopropylic alcohol on a Cu/SiO2 catalyst: a study of the activity evolution and reactivation of the catalyst, Appl. Catal. A-Gen., 142 (2) (1996) 375-386. [41] H.R. Yue, Y.J. Zhao, L. Zhao, J. Lv, S.P. Wang, J.L. Gong, X.B. Ma, Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO2/cordierite monolithic catalyst: Enhanced internal mass transfer and stability, AlChE J., 58 (9) (2012) 2798-2809. [42] J.C. Groen, L.A.A. Peffer, J. Pérez-Ramırez, Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis, Microporous Mesoporous Mater., 60 (1-3) (2003) 1-17. [43] C. Vandergrift, Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles, J. Catal., 131 (1) (1991) 178-189. [44] A. Dandekar, M.A. Vannice, Determination of the dispersion and surface oxidation states of supported Cu catalysts, J. Catal., 178 (2) (1998) 621-639. [45] Y.J. Zhao, Y.Q. Zhang, Y. Wang, J. Zhang, Y. Xu, S.P. Wang, X.B. Ma, Structure evolution of mesoporous silica supported copper catalyst for dimethyl oxalate hydrogenation, Appl. Catal. A-Gen., 539 (2017) 59-69. [46] X.L. Li, G.H. Yang, M. Zhang, X.F. Gao, H.J. Xie, Y.X. Bai, Y.Q. Wu, J.X. Pan, Y.S. Tan, Insight into the correlation between Cu species evolution and ethanol selectivity in the direct ethanol synthesis from CO hydrogenation, ChemCatChem, 11 (3) (2019) 1123-1130. [47] H.R. Yue, Y.J. Zhao, S. Zhao, B. Wang, X.B. Ma, J.L. Gong, A copper-phyllosilicate core-sheath nanoreactor for carbon-oxygen hydrogenolysis reactions, Nat. Commun., 4 (2013) 2339. [48] E.K. Poels, D.S. Brands, Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction, Appl. Catal. A-Gen., 191 (1) (2000) 83-96. |