[1] T.P. Thinh, J.L. Duran, R.S. Ramalho, Estimation of ideal gas heat capacities of hydrocarbons from group contribution techniques. new and accurate approach, Ind. Eng. Chem. Proc. Des. Dev. 10 (4) (1971) 576–582. [2] J.S. Chickos, D.G. Hesse, J.F. Liebman, A group additivity approach for the estimation of heat capacities of organic liquids and solids at 298 K, Struct. Chem. 4 (4) (1993) 261–269. [3] M. Zábranský, V. Růžička, Estimation of the heat capacities of organic liquids as a function of temperature using group additivity: an amendment, J. Phys. Chem. Ref. Data 33 (4) (2004) 1071–1081. [4] M. Zábranský, Z. Kolská, V. Růžička, E.S. Domalski, Heat capacity of liquids: critical review and recommended values. supplement II, J. Phys. Chem. Ref. Data 39 (1) (2010) 013103. [5] Z. Kolská, J. Kukal, M. Zábranský, V. Růžička, Estimation of the heat capacity of organic liquids as a function of temperature by a three-level group contribution method, Ind. Eng. Chem. Res. 47 (6) (2008) 2075–2085. [6] R. Naef, A generally applicable computer algorithm based on the group additivity method for the calculation of seven molecular descriptors: heat of combustion, LogPO/W, LogS, refractivity, polarizability, toxicity and LogBB of organic compounds; scope and limits of applicability, Molecules 20 (10) (2015) 18279–18351. [7] R. Naef, W. Acree, Calculation of five thermodynamic molecular descriptors by means of a general computer algorithm based on the group-additivity method: standard enthalpies of vaporization, sublimation and solvation, and entropy of fusion of ordinary organic molecules and total phase-change entropy of liquid crystals, Molecules 22 (7) (2017) 1059. [8] R. Naef, Calculation of the isobaric heat capacities of the liquid and solid phase of organic compounds at and around 298.15 K based on their “true” molecular volume, Molecules 24 (8) (2019) 1626. [9] R. Naef, Calculation of the isobaric heat capacities of the liquid and solid phase of organic compounds at 298.15K by means of the group-additivity method, Molecules 25 (5) (2020) 1147. [10] R. Ceriani, R. Gani, A.J.A. Meirelles, Prediction of heat capacities and heats of vaporization of organic liquids by group contribution methods, Fluid Phase Equilibria 283 (1–2) (2009) 49–55. [11] A. Ahmadi, R. Haghbakhsh, S. Raeissi, V. Hemmati, A simple group contribution correlation for the prediction of ionic liquid heat capacities at different temperatures, Fluid Phase Equilibria 403 (2015) 95–103. [12] M. Čanji, M. Bendová, Z. Wagner, Comparison of prediction methods of heat capacity of ionic liquids with selected experimental data by means of advanced data analysis, Thermochimica Acta 690 (2020) 178602. [13] R.L. Ge, C. Hardacre, J. Jacquemin, P. Nancarrow, D.W. Rooney, Heat capacities of ionic liquids as a function of temperature at 0.1 MPa. measurement and prediction, J. Chem. Eng. Data 53 (9) (2008) 2148–2153. [14] M.G. Bogdanov, B. Iliev, W. Kantlehner, The residual volume approach II: simple prediction of ionic conductivity of ionic liquids, Zeitschrift Für Naturforschung B 64 (6) (2009) 756–764. [15] M.G. Bogdanov, D. Petkova, S. Hristeva, I. Svinyarov, W. Kantlehner, New guanidinium-based room-temperature ionic liquids. substituent and anion effect on density and solubility in water, Zeitschrift Für Naturforschung B 65 (1) (2010) 37–48. [16] R.L. Gardas, J.A.P. Coutinho, A group contribution method for heat capacity estimation of ionic liquids, Ind. Eng. Chem. Res. 47 (15) (2008) 5751–5757. [17] R. Haghbakhsh, S. Raeissi, A.R.C. Duarte, Group contribution and atomic contribution models for the prediction of various physical properties of deep eutectic solvents, Sci. Rep. 11 (1) (2021) 6684. [18] Y. Huang, H.F. Dong, X.P. Zhang, C.S. Li, S.J. Zhang, A new fragment contribution-corresponding states method for physicochemical properties prediction of ionic liquids, Aiche J. 59 (4) (2013) 1348–1359. [19] K. Oster, J. Jacquemin, C. Hardacre, A.P.C. Ribeiro, A. Elsinawi, Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity, J. Chem. Thermodyn. 118 (2018) 1–15. [20] J.O. Valderrama, G. Martinez, C.A. Faúndez, Heat capacity of ionic liquids using artificial neural networks and the concept of mass connectivity, Int. J. Thermophys. 32 (5) (2011) 942–956. [21] J.O. Valderrama, A. Toro, R.E. Rojas, Prediction of the heat capacity of ionic liquids using the mass connectivity index and a group contribution method, J. Chem. Thermodyn. 43 (7) (2011) 1068–1073. [22] D. Waliszewski, I. Stępniak, H. Piekarski, A. Lewandowski, Heat capacities of ionic liquids and their heats of solution in molecular liquids, Thermochimica Acta 433 (1–2) (2005) 149–152. [23] P. Nancarrow, M. Lewis, L. AbouChacra, Group contribution methods for estimation of ionic liquid heat capacities: critical evaluation and extension, Chem. Eng. Technol. 38 (4) (2015) 632–644. [24] J. Li, L. Xia, S.G. Xiang, A new method based on elements and chemical bonds for organic compounds critical properties estimation, Fluid Phase Equilibria 417 (2016) 1–6. [25] L. Xia, S.G. Xiang, X.P. Jia, Estimating the normal boiling point of organic compounds based on elements and chemical bonds, Comput. Aided Chem. Eng. 27 (2009) 363–368. [26] L.C. Yaws, Yaws' handbook of thermodynamic and physical properties of chemical compounds, Knovel, Texas, 2003.**** [27] K.A. Marill, Advanced statistics: linear regression, part I: simple linear regression, Acad. Emerg. Med. 11 (1) (2004) 87–93. [28] K. Liu, Measurement error and its impact on partial correlation and multiple linear regression analyses, Am. J. Epidemiol. 127 (4) (1988) 864–874. [29] K.A. Marill, Advanced statistics: linear regression, part II: multiple linear regression, Acad. Emerg. Med. 11 (1) (2004) 94–102. [30] N. Pandis, Multiple linear regression analysis, Am J Orthod Dentofacial Orthop 149 (4) (2016) 581. [31] D. Broadhurst, R. Goodacre, A. Jones, J.J. Rowland, D.B. Kell, Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry, Anal. Chimica Acta 348 (1–3) (1997) 71–86. [32] G.Q. Zheng, P.J. Zhang, Meta-heuristic algorithms for parameter estimation of semi-parametric linear regression models, Comput. Stat. Data Anal. 51 (2) (2006) 801–808. [33] L. Xia, J.Y. Ling, Z. Xu, R.S. Bi, W.Y. Zhao, S.G. Xiang, Application of sequential quadratic programming based on active set method in cleaner production, Clean Technol. Environ. Policy 24 (1) (2022) 413–422. [34] N. Khanmohammadi, H. Rezaie, M. Montaseri, J. Behmanesh, The application of multiple linear regression method in reference evapotranspiration trend calculation, Stoch. Environ. Res. Risk Assess. 32 (3) (2018) 661–673. [35] U. Wahl, J.G. Correia, T. Mendonça, S. Decoster, Direct evidence for Sb as a Zn site impurity in ZnO, Appl. Phys. Lett. 94 (26) (2009) 261901. [36] A.F. Silva, J.V. da Silva Jr, R.L.A. Haiduke, R.E. Bruns, QTAIM charge-charge flux-dipole flux interpretation of electronegativity and potential models of the fluorochloromethane mean dipole moment derivatives, J. Phys. Chem. A 115 (45) (2011) 12572–12581. [37] M.R. Leach, Concerning electronegativity as a basic elemental property and why the periodic table is usually represented in its medium form, Found. Chem. 15 (1) (2013) 13–29. [38] K. Müller, Organic fluorine: The mighty mite, Chimia (Aarau) 73 (6) (2019) 417-419. |