[1] J. Davidovits, Geopolymer Chemistry And Applications, 5th edition, Geopolymer Institute, Saint Quentin, 2020. [2] H. Xu, J.S.J. van Deventer, The geopolymerisation of alumino-silicate minerals, Int. J. Miner. Process. 59 (3) (2000) 247-266. [3] D.L.Y. Kong, J.G. Sanjayan, Effect of elevated temperatures on geopolymer paste, mortar and concrete, Cem. Concr. Res. 40 (2) (2010) 334-339. [4] F. Farooq, X. Jin, M. Faisal Javed, A. Akbar, M. Izhar Shah, F. Aslam, R. Alyousef, Geopolymer concrete as sustainable material: A state of the art review, Constr. Build. Mater. 306 (2021) 124762. [5] T.A. Aiken, J. Kwasny, W. Sha, M.N. Soutsos, Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack, Cem. Concr. Res. 111 (2018) 23-40. [6] D.M. Ren, C.J. Yan, P. Duan, Z.H. Zhang, L.Y. Li, Z.Y. Yan, Durability performances of wollastonite, tremolite and basalt fiber-reinforced metakaolin geopolymer composites under sulfate and chloride attack, Constr. Build. Mater. 134 (2017) 56-66. [7] P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, The role of inorganic polymer technology in the development of ‘green concrete’, Cem. Concr. Res. 37 (12) (2007) 1590-1597. [8] N B Singh, S K Saxena, M. Kumar, Effect of nanomaterials on the properties of geopolymer mortars and concrete, Mater. Today Proc. 5 (3) (2018) 9035-9040. [9] S. Adjei, S. Elkatatny, W.N. Aggrey, Y. Abdelraouf, Geopolymer as the future oil-well cement: A review, J. Petroleum Sci. Eng. 208 (2022) 109485. [10] Y. Yan, Z.C. Guan, W.J. Yan, H.T. Wang, Mechanical response and damage mechanism of cement sheath during perforation in oil and gas well, J. Petroleum Sci. Eng. 188 (2020) 106924. [11] S. Salehi, M.J. Khattak, A.H. Bwala, F.K. S, Characterization, morphology and shear bond strength analysis of geopolymers: Implications for oil and gas well cementing applications, J. Nat. Gas Sci. Eng. 38 (2017) 323-332. [12] N.M. Faqir, S. Elkatatny, M. Mahmoud, R. Shawabkeh, Fabrication of kaolin-based cement plug for CO2 storage wells, Appl. Clay Sci. 141 (2017) 81-87. [13] F.N. Okoye, S. Prakash, N.B. Singh, Durability of fly ash based geopolymer concrete in the presence of silica fume, J. Clean. Prod. 149 (2017) 1062-1067. [14] P. Sajan, T.Y. Jiang, C. Lau, G. Tan, K. Ng, Combined effect of curing temperature, curing period and alkaline concentration on the mechanical properties of fly ash-based geopolymer, Clean. Mater. 1 (2021) 100002. [15] T. Luukkonen, Z. Abdollahnejad, J. Yliniemi, P. Kinnunen, M. Illikainen, One-part alkali-activated materials: A review, Cem. Concr. Res. 103 (2018) 21-34. [16] N. Chuewangkam, P. Payakaniti, P. Chindaprasirt, S. Pinitsoontorn, Ohmic heating as an effective path to rapidly cure and strengthen alkali activated material, Constr. Build. Mater. 322 (2022) 126425. [17] S. Samantasinghar, S. Singh, Effects of curing environment on strength and microstructure of alkali-activated fly ash-slag binder, Constr. Build. Mater. 235 (2020) 117481. [18] S. Salehi, J. Khattak, F.K. Saleh, S. Igbojekwe, Investigation of mix design and properties of geopolymers for application as wellbore cement, J. Petroleum Sci. Eng. 178 (2019) 133-139. [19] B.H. Mo, H. Zhu, X.M. Cui, Y. He, S.Y. Gong, Effect of curing temperature on geopolymerization of metakaolin-based geopolymers, Appl. Clay Sci. 99 (2014) 144-148. [20] L. Yun Ming, K. Hussin, M.M. Al Bakri Abdullah, M. Binhussain, L. Musa, I. Khairul Nizar, C.M.R. Ghazali, C.Y. Heah, Effect of curing regimes on metakaolin geopolymer pastes produced from geopolymer powder, Adv. Mater. Res. 626 (2012) 931-936. [21] J.K. Yuan, P.G. He, D.C. Jia, C. Yang, Y. zhang, S. Yan, Z.H. Yang, X.M. Duan, S.J. Wang, Y. Zhou, Effect of curing temperature and SiO2/K2O molar ratio on the performance of metakaolin-based geopolymers, Ceram. Int. 42 (14) (2016) 16184-16190. [22] M.X. Peng, Z.H. Wang, Q.G. Xiao, F. Song, W. Xie, L.C. Yu, H.W. Huang, S.J. Yi, Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3, Appl. Clay Sci. 139 (2017) 64-71. [23] R.R. Suppiah, S.H.A. Rahman, N. Shafiq, S. Irawan, Uniaxial compressive strength of geopolymer cement for oil well cement, J. Petrol. Explor. Prod. Technol. 10 (1) (2020) 67-70. [24] N. Poornima, D. Katyal, T. Revathi, M. Sivasakthi, R. Jeyalakshmi, Effect of curing on mechanical strength and microstructure of fly ash blend GGBS geopolymer, Portland cement mortar and its behavior at elevated temperature, Mater. Today Proc. 47 (2021) 863-870. [25] H.Y. Zhang, V. Kodur, B. Wu, L. Cao, F. Wang, Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures, Constr. Build. Mater. 109 (2016) 17-24. [26] A. Nazari, A. Bagheri, J.G. Sanjayan, M. Dao, C. Mallawa, P. Zannis, S. Zumbo, Thermal shock reactions of Ordinary Portland cement and geopolymer concrete: Microstructural and mechanical investigation, Constr. Build. Mater. 196 (2019) 492-498. [27] P. Sturm, G.J.G. Gluth, S. Simon, H.J.H. Brouwers, H.C. Kühne, The effect of heat treatment on the mechanical and structural properties of one-part geopolymer-zeolite composites, Thermochimica Acta 635 (2016) 41-58. [28] D. Koloušek, J. Brus, M. Urbanova, J. Andertova, V. Hulinsky, J. Vorel, Preparation, structure and hydrothermal stability of alternative (sodium silicate-free) geopolymers, J. Mater. Sci. 42 (22) (2007) 9267-9275. [29] Y. Liu, C.J. Yan, X.M. Qiu, D. Li, H.Q. Wang, A. Alshameri, Preparation of faujasite block from fly ash-based geopolymer via in-situ hydrothermal method, J. Taiwan Inst. Chem. Eng. 59 (2016) 433-439. [30] H.R. Khalid, N.K. Lee, S.M. Park, N. Abbas, H.K. Lee, Synthesis of geopolymer-supported zeolites via robust one-step method and their adsorption potential, J. Hazard. Mater. 353 (2018) 522-533. [31] N.K. Lee, H.R. Khalid, H.K. Lee, Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment, Microporous Mesoporous Mater. 229 (2016) 22-30. [32] P.G. He, M.R. Wang, S. Fu, D.C. Jia, S. Yan, J.K. Yuan, J.H. Xu, P.F. Wang, Y. Zhou, Effects of Si/Al ratio on the structure and properties of metakaolin based geopolymer, Ceram. Int. 42 (13) (2016) 14416-14422. [33] Q. Wan, F. Rao, S.X. Song, R.E. García, R.M. Estrella, C.L. Patiño, Y.M. Zhang, Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios, Cem. Concr. Compos. 79 (2017) 45-52. [34] Y.S. Zhang, W. Sun, Z.J. Li, Composition design and microstructural characterization of calcined kaolin-based geopolymer cement, Appl. Clay Sci. 47 (3-4) (2010) 271-275. [35] Z. Zuhua, Y. Xiao, Z. Huajun, C. Yue, Role of water in the synthesis of calcined kaolin-based geopolymer, Appl. Clay Sci. 43 (2) (2009) 218-223. [36] M. Lizcano, A. Gonzalez, S. Basu, K. Lozano, M. Radovic, Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers, J. Am. Ceram. Soc. 95 (7) (2012) 2169-2177. [37] P. De Silva, K. Sagoe-Crenstil, V. Sirivivatnanon, Kinetics of geopolymerization: role of Al2O3 and SiO2, Cem. Concr. Res. 37 (4) (2007) 512-518. [38] P. Duxson, J.L. Provis, G.C. Lukey, S.W. Mallicoat, W.M. Kriven, J.S.J. van Deventer, Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surf. A Physicochem. Eng. Aspects 269 (1-3) (2005) 47-58. [39] Y. Cui, D.M. Wang, Y.R. Wang, R. Sun, Y.F. Rui, Effects of the n(H2O: Na2Oeq) ratio on the geopolymerization process and microstructures of fly ash-based geopolymers, J. Non Cryst. Solids 511 (2019) 19-28. [40] GB/T 17671-2021, Test method of cement mortar strength (ISO method), China Building Material Council, Beijing, 2021. (in Chinese). [41] H.W. Tian, X.M. Kong, T. Su, D.M. Wang, Comparative study of two PCE superplasticizers with varied charge density in Portland cement and sulfoaluminate cement systems, Cem. Concr. Res. 115 (2019) 43-58. [42] A.V. Kirschner, H. Harmuth, Investigation of geopolymer binders with respect to their application for building materials, Ceram. Silikaty 48 (3) (2004) 117-120. [43] I. Ozer, S. Soyer-Uzun, Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceram. Int. 41 (8) (2015) 10192-10198. [44] Z.M. Li, S.Z. Zhang, Y.B. Zuo, W. Chen, G. Ye, Chemical deformation of metakaolin based geopolymer, Cem. Concr. Res. 120 (2019) 108-118. [45] Z. Zheng, X. Ma, Z.H. Zhang, Y.X. Li, In-situ transition of amorphous gels to Na-P1 zeolite in geopolymer: Mechanical and adsorption properties, Constr. Build. Mater. 202 (2019) 851-860. [46] R. Sánchez-Hernández, I. Padilla, S. López-Andrés, A. López-Delgado, Eco-friendly bench-scale zeolitization of an Al-containing waste into gismondine-type zeolite under effluent recycling, J. Clean. Prod. 161 (2017) 792-802. [47] Y. Liu, C.J. Yan, J.J. Zhao, Z.H. Zhang, H.Q. Wang, S. Zhou, L.M. Wu, Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water, J. Clean. Prod. 202 (2018) 11-22. [48] W.Z. Liu, T. Aldahri, S. Ren, C.C. Xu, S. Rohani, B. Liang, C. Li, Solvent-free synthesis of hydroxycancrinite zeolite microspheres during the carbonation process of blast furnace slag, J. Alloys Compd. 847 (2020) 156456. [49] L.M. Huang, Z.H. Yang, Hydration kinetics of tricalcium silicate with the presence of portlandite and calcium silicate hydrate, Thermochimica Acta 681 (2019) 178398. [50] S. Grangeon, F. Claret, C. Lerouge, F. Warmont, T. Sato, S. Anraku, C. Numako, Y. Linard, B. Lanson, On the nature of structural disorder in calcium silicate hydrates with a calcium/silicon ratio similar to tobermorite, Cem. Concr. Res. 52 (2013) 31-37. [51] E. L'Hôpital, B. Lothenbach, K. Scrivener, D.A. Kulik, Alkali uptake in calcium alumina silicate hydrate (C-A-S-H), Cem. Concr. Res. 85 (2016) 122-136. [52] I. Garcia-Lodeiro, A. Palomo, A. Fernández-Jiménez, D.E. MacPhee, Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O, Cem. Concr. Res. 41 (9) (2011) 923-931. [53] B. Walkley, R. San Nicolas, M.A. Sani, G.J. Rees, J.V. Hanna, J.S.J. van Deventer, J.L. Provis, Phase evolution of C-(N)-A-S-H/N-A-S-H gel blends investigated via alkali-activation of synthetic calcium aluminosilicate precursors, Cem. Concr. Res. 89 (2016) 120-135. [54] D.B. Istuque, L. Reig, J.C.B. Moraes, J.L. Akasaki, M.V. Borrachero, L. Soriano, J. Payá, J.A. Malmonge, M.M. Tashima, Behaviour of metakaolin-based geopolymers incorporating sewage sludge ash (SSA), Mater. Lett. 180 (2016) 192-195. [55] P. De Silva, K. Sagoe-Crenstil, Medium-term phase stability of Na2O-Al2O3-SiO2-H2O geopolymer systems, Cem. Concr. Res. 38 (6) (2008) 870-876. [56] T. da Silva Rocha, D.P. Dias, F.C.C. França, R.R. de Salles Guerra, L.R. da Costa de Oliveira Marques, Metakaolin-based geopolymer mortars with different alkaline activators (Na+ and K+), Constr. Build. Mater. 178 (2018) 453-461. [57] P. Rożek, M. Król, W. Mozgawa, Geopolymer-zeolite composites: A review, J. Clean. Prod. 230 (2019) 557-579. [58] Z.H. Liu, Q. Tang, C.M. Li, Y. He, X.M.Cui, Preparation of NaA zeolite spheres from geopolymer gels using a one-step method in silicone oil, Int. J. Appl. Ceram. Technol. 14 (5) (2017) 982-986. [59] S.K. Lee, J.F.Stebbins, The degree of aluminum avoidance in aluminosilicate glasses, Am. Mineral. 84 (5-6) (1999) 937-945. [60] P. Duxson, J.L. Provis, G.C. Lukey, F. Separovic, J.S. van Deventer, 29Si NMR study of structural ordering in aluminosilicate geopolymer gels, Langmuir 21 (7) (2005) 3028-3036. [61] B. Walkley, J.L. Provis, Solid-state nuclear magnetic resonance spectroscopy of cements, Mater. Today Adv. 1 (2019) 100007. [62] X. Gao, Q.L. Yu, H.J.H. Brouwers, Apply 29Si, 27Al MAS NMR and selective dissolution in identifying the reaction degree of alkali activated slag-fly ash composites, Ceram. Int. 43 (15) (2017) 12408-12419. [63] H. Lin, H. Liu, Y. Li, X.M. Kong, Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures, Cem. Concr. Res. 144 (2021) 106425. [64] H. Sreenivasan, E. Adesanya, H. Niu, P. Perumal, A.M. Kantola, V.V. Telkki, M. Huttula, W. Cao, J.L. Provis, M. Illikainen, P. Kinnunen, Evidence of formation of an amorphous magnesium silicate (AMS) phase during alkali activation of (Na-Mg) aluminosilicate glasses, Cem. Concr. Res. 145 (2021) 106464. [65] B. Walkley, R. San Nicolas, M.A. Sani, J.D. Gehman, J.S.J. van Deventer, J.L. Provis, Synthesis of stoichiometrically controlled reactive aluminosilicate and calcium-aluminosilicate powders, Powder Technol. 297 (2016) 17-33. [66] S. Greiser, P. Sturm, G.J.G. Gluth, M. Hunger, C. Jäger, Differentiation of the solid-state NMR signals of gel, zeolite phases and water species in geopolymer-zeolite composites, Ceram. Int. 43 (2) (2017) 2202-2208. [67] R.R. Xu, W.Q. Pang, J.H. Yu, Q.S. Huo, J.S. Chen, Chemistry of Zeolites and Related Porous Materials, Wiley, New York, 2007. |