[1] O. Fiehn, W. Weckwerth, Deciphering metabolic networks, Eur. J. Biochem. 270 (4) (2003) 579-588. [2] M.K. Egbo, A fundamental review on composite materials and some of their applications in biomedical engineering, J. King Saud Univ. Eng. Sci. 33 (8) (2021) 557-568. [3] L.C. Zhang, L.Y.Chen, A review on biomedical titanium alloys: Recent progress and prospect, Adv. Eng. Mater. 21 (4) (2019) 1801215. [4] S.J. Li, C.W. Guo, X. Wang, C. Guan, G. Chen, Corrosion inhibition coating based on the self-assembled polydopamine films and its anti-corrosion properties, Polymers 14 (4) (2022) 794. [5] M.L. Zheludkevich, I.M. Salvado, M.G.S. Ferreira, Sol-gel coatings for corrosion protection of metals, J. Mater. Chem. 15 (48) (2005) 5099-5111. [6] T.A. Söylev, M.G. Richardson, Corrosion inhibitors for steel in concrete: State-of-the-art report, Constr. Build. Mater. 22 (4) (2008) 609-622. [7] T.M. Lv, S.H. Zhu, L. Guo, S.T. Zhang, Experimental and theoretical investigation of indole as a corrosion inhibitor for mild steel in sulfuric acid solution, Res. Chem. Intermed.41 (10) (2015) 7073-7093. [8] P. Riani, G. Garbarino, A. Infantes-Molina, E. Rodríguez-Castellón, F. Canepa, G. Busca, Hydrogen from steam reforming of ethanol over cobalt nanoparticles: Effect of boron impurities, Appl. Catal. A Gen. 518 (2016) 67-77. [9] S. Shurbaji, P.T. Huong, T.M.Altahtamouni, Review on the visible light photocatalysis for the decomposition of ciprofloxacin, norfloxacin, tetracyclines, and sulfonamides antibiotics in wastewater, Catalysts 11 (4) (2021) 437. [10] Y.T. Shi, L.L. Chen, S.T. Zhang, H.R. Li, F. Gao, New branched benign compounds including double antibiotic scaffolds: Synthesis, simulation and adsorption for anticorrosion effect on mild steel, Front. Chem. Sci. Eng. (2022) 1-16. [11] K.F. Khaled, The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions, Electrochimica Acta 48 (17) (2003) 2493-2503. [12] B.C. Tan, S.T. Zhang, H.Y. Liu, Y.W. Guo, Y.J. Qiang, W.P. Li, L. Guo, C.L. Xu, S.J. Chen, Corrosion inhibition of X65 steel in sulfuric acid by two food flavorants 2-isobutylthiazole and 1-(1, 3-Thiazol-2-yl) ethanone as the green environmental corrosion inhibitors: Combination of experimental and theoretical researches, J. Colloid Interface Sci. 538 (2019) 519-529. [13] M Frisch, G Trucks, H Schlegel, G Scuseria, M Robb, J Cheeseman, G Scalmani, V Barone, B Mennucci, G Petersson, Gaussian 09, Revision D. 01; Wallingford CT: Gaussian, Inc., 2013. [14] V.A. Adole, B.S. Jagdale, T.B. Pawar, A.B.Sawant, Experimental and theoretical exploration on single crystal, structural, and quantum chemical parameters of (E)-7-(arylidene)-1, 2, 6, 7-tetrahydro-8 H-indeno[5, 4-b]furan-8-one derivatives: A comparative study, J. Chin. Chem. Soc. 67 (10) (2020) 1763-1777. [15] A.H.Radhi, HOMO-LUMO energies and geometrical structures effecton corrosion inhibition for organic compounds predict by DFT and PM3 methods, NeuroQuantology 18 (1) (2020) 37-45. [16] C.Y. Lee, T.J. Lin, H.H. Sheu, H.B. Lee, A study on corrosion and corrosion-wear behavior of Fe-based amorphous alloy coating prepared by high velocity oxygen fuel method, J. Mater. Res. Technol. 15 (2021) 4880-4895. [17] M. Tourabi, K. Nohair, M. Traisnel, C. Jama, F. Bentiss, Electrochemical and XPS studies of the corrosion inhibition of carbon steel in hydrochloric acid pickling solutions by 3, 5-bis(2-thienylmethyl)-4-amino-1, 2, 4-triazole, Corros. Sci. 75 (2013) 123-133. [18] X.Z. Wang, Z. Wang, X.S. Jiang, M. Zhang, Y.F. Wang, J.G. Lv, G. He, Z.Q.Sun, In-situ deposition and growth of Cu2ZnSnS4Nanocrystals on TiO2Nanorod arrays for enhanced photoelectrochemical performance, J. Electrochem. Soc. 164 (13) (2017) H863-H871. [19] Z. Zhang, N.C. Tian, L.Z. Zhang, L. Wu, Inhibition of the corrosion of carbon steel in HCl solution by methionine and its derivatives, Corros. Sci. 98 (2015) 438-449. [20] Nor Zakiah Nor Hashim, Karimah Kassim, Hamizah Mohd Zaki, Abdulrahman I Alharthi and Zaidi Embong, XPS and DFT investigations of corrosion inhibition of substituted benzylidene Schiff bases on mild steel in hydrochloric acid, Appl. Surf. Sci., 476(2019)861-877. [21] D.M. Collins, T. Erinosho, F.P.E. Dunne, R.I. Todd, T. Connolley, M. Mostafavi, H. Kupfer, A.J. Wilkinson, A synchrotron X-ray diffraction study of non-proportional strain-path effects, Acta Mater. 124 (2017) 290-304. [22] P. Mourya, S. Banerjee, R.B. Rastogi, M.M.Singh, Inhibition of mild steel corrosion in hydrochloric and sulfuric acid media using a thiosemicarbazone derivative, Ind. Eng. Chem. Res. 52 (36) (2013) 12733-12747. [23] R.V. Siriwardane, J.A. Poston Jr, E.P. Fisher, M.S. Shen, A.L. Miltz, Decomposition of the sulfates of copper, iron (II), iron (III), nickel, and zinc: XPS, SEM, DRIFTS, XRD, and TGA study, Appl. Surf. Sci. 152 (3-4) (1999) 219-236. [24] S.J. Yuan, S.O. Pehkonen, B. Liang, Y.P. Ting, K.G. Neoh, E.T. Kang, Superhydrophobic fluoropolymer-modified copper surface via surface graft polymerisation for corrosion protection, Corros. Sci. 53 (9) (2011) 2738-2747. [25] J. Haque, V. Srivastava, M.A. Quraishi, D. Singh Chauhan, H. Lgaz, I.M. Chung, Polar group substituted imidazolium zwitterions as eco-friendly corrosion inhibitors for mild steel in acid solution, Corros. Sci. 172 (2020) 108665. [26] A.H. Tantawy, K.A. Soliman, H.M. Abd El-Lateef, Novel synthesized cationic surfactants based on natural piper nigrum as sustainable-green inhibitors for steel pipeline corrosion in CO2-3.5%NaCl: DFT, Monte Carlo simulations and experimental approaches, J. Clean. Prod. 250 (2020) 119510. [27] M. Basik, M. Mobin, Chondroitin sulfate as potent green corrosion inhibitor for mild steel in 1 M HCl, J. Mol. Struct. 1214 (2020) 128231. [28] A. Farhadian, A. Rahimi, N. Safaei, A. Shaabani, M. Abdouss, A. Alavi, A theoretical and experimental study of castor oil-based inhibitor for corrosion inhibition of mild steel in acidic medium at elevated temperatures, Corros. Sci. 175 (2020) 108871. [29] S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, P. Banerjee, Adsorption and corrosion inhibition effect of Schiff base molecules on the mild steel surface in 1 mol·L-1 HCl medium: A combined experimental and theoretical approach, Phys. Chem. Chem. Phys. 17 (8) (2015) 5679-5690. [30] X.L. Zuo, W.P. Li, W. Luo, X. Zhang, Y.J. Qiang, J. Zhang, H. Li, B.C. Tan, Research of Lilium brownii leaves extract as a commendable and green inhibitor for X70 steel corrosion in hydrochloric acid, J. Mol. Liq. 321 (2021) 114914. [31] M.D. Levi, D.Aurbach, Simultaneous measurements and modeling of the electrochemical impedance and the cyclic voltammetric characteristics of graphite electrodes doped with lithium, J. Phys. Chem. B 101 (23) (1997) 4630-4640. [32] X.W. Zheng, S.T. Zhang, W.P. Li, L.L. Yin, J.H. He, J.F. Wu, Investigation of 1-butyl-3-methyl-1H-benzimidazolium iodide as inhibitor for mild steel in sulfuric acid solution, Corros. Sci. 80 (2014) 383-392. [33] X.W. Zheng, S.T. Zhang, W.P. Li, M. Gong, L.L. Yin, Experimental and theoretical studies of two imidazolium-based ionic liquids as inhibitors for mild steel in sulfuric acid solution, Corros. Sci. 95 (2015) 168-179. [34] I Ahamad, S Khan, KR Ansari and MA Quraishi, Primaquine: A pharmaceutically active compound as corrosion inhibitor for mild steel in hydrochloric acid solution, J Chem Pharm Res. 3(2)(2011)703-717. [35] F. Bentiss, M. Lebrini, M. Lagrenée, M. Traisnel, A. Elfarouk, H. Vezin, The influence of some new 2, 5-disubstituted 1, 3, 4-thiadiazoles on the corrosion behaviour of mild steel in 1 mol·L-1 HCl solution: AC impedance study and theoretical approach, Electrochimica Acta 52 (24) (2007) 6865-6872. [36] M. Kissi, M. Bouklah, B. Hammouti, M. Benkaddour, Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution, Appl. Surf. Sci. 252 (12) (2006) 4190-4197. [37] M. Vadi, A.O. Mansoorabad, M. Mohammadi, N.Rostami, Investigation of Langmuir, freundlich and temkin adsorption isotherm of tramadol by multi-wall carbon nanotube, Asian J. Chem. 25 (10) (2013) 5467-5469. [38] V.L. Kolev, K.D. Danov, P.A. Kralchevsky, G. Broze, A.Mehreteab, Comparison of the van der waals and Frumkin adsorption isotherms for sodium dodecyl sulfate at various salt concentrations, Langmuir 18 (23) (2002) 9106-9109. [39] R.J. UmplebyII, S.C. Baxter, M. Bode, J.K. BerchJr, R.N. Shah, K.D. Shimizu, Application of the Freundlich adsorption isotherm in the characterization of molecularly imprinted polymers, Anal. Chimica Acta 435 (1) (2001) 35-42. [40] B. Debnath, M. Majumdar, M. Bhowmik, K.L. Bhowmik, A. Debnath, D.N. Roy, The effective adsorption of tetracycline onto zirconia nanoparticles synthesized by novel microbial green technology, J Environ Manage 261 (2020) 110235. [41] I.A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: Equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater. 154 (1-3) (2008) 337-346. [42] A. Nuhnen, C. Janiak, A practical guide to calculate the isosteric heat/enthalpy of adsorption via adsorption isotherms in metal-organic frameworks, MOFs, Dalton Trans. 49 (30) (2020) 10295-10307. [43] H.M. Abd El-Lateef, Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions, Corros. Sci. 92 (2015) 104-117. [44] F. Tezcan, G. Yerlikaya, A. Mahmood, G. Kardaş, A novel thiophene Schiff base as an efficient corrosion inhibitor for mild steel in 1.0 M HCl: Electrochemical and quantum chemical studies, J. Mol. Liq. 269 (2018) 398-406. [45] M.P. Andersson, P. Uvdal, New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-zeta basis set 6-311+G(d, p), J. Phys. Chem. A 109 (12) (2005) 2937-2941. [46] S.K. Saha, M. Murmu, N.C. Murmu, P. Banerjee, Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: A combined DFT and MD simulation study, J. Mol. Liq. 224 (2016) 629-638. [47] L. Guo, Z.S. Safi, S. Kaya, W. Shi, B. Tüzün, N. Altunay, C.Kaya, Anticorrosive effects of some thiophene derivatives against the corrosion of iron: A computational study, Front. Chem. 6 (2018) 155. [48] A. Zarrouk, B. Hammouti, A. Dafali, M. Bouachrine, H. Zarrok, S. Boukhris, S.S. Al-Deyab, A theoretical study on the inhibition efficiencies of some quinoxalines as corrosion inhibitors of copper in nitric acid, J. Saudi Chem. Soc. 18 (5) (2014) 450-455. [49] R.G.Pearson, Absolute electronegativity and hardness: Application to inorganic chemistry, Inorg. Chem. 27 (4) (1988) 734-740. [50] R.F. Peterson, D.F. Treagust, P.Garnett, Development and application of a diagnostic instrument to evaluate grade-11 and-12 students' concepts of covalent bonding and structure following a course of instruction, J. Res. Sci. Teach. 26 (4) (1989) 301-314. [51] F.J.Baltá Calleja, Microhardness relating to crystalline polymers. Characterization of Polymers in the Solid State I: Part A: NMR and Other Spectroscopic Methods Part B: Mechanical Methods. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985: 117-148. [52] F. Meyers, S.R. Marder, B.M. Pierce, J.L.Bredas, Electric field modulated nonlinear optical properties of donor-acceptor polyenes: Sum-over-states investigation of the relationship between molecular polarizabilities (.alpha., .beta., and.gamma.) and bond length alternation, J. Am. Chem. Soc. 116 (23) (1994) 10703-10714. [53] T. Arslan, F. Kandemirli, E.E. Ebenso, I. Love, H. Alemu, Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium, Corros. Sci. 51 (1) (2009) 35-47. [54] F.A. Azeez, O.A. Al-Rashed, A. Abdel Nazeer, Controlling of mild-steel corrosion in acidic solution using environmentally friendly ionic liquid inhibitors: Effect of alkyl chain, J. Mol. Liq. 265 (2018) 654-663. [55] A.H. Mostafatabar, G. Bahlakeh, B. Ramezanzadeh, A. Dehghani, M. Ramezanzadeh, A comprehensive electronic-scale DFT modeling, atomic-level MC/MD simulation, and electrochemical/surface exploration of active nature-inspired phytochemicals based on Heracleum persicum seeds phytoextract for effective retardation of the acidic-induced corrosion of mild steel, J. Mol. Liq. 331 (2021) 115764. [56] A.P.S. Kaban, A. Ridhova, G. Priyotomo, B. Elya, A. Maksum, Y. Sadeli, S. Sutopo, T. Aditiyawarman, R. Riastuti, J.W.Soedarsono, Development of white tea extract as green corrosion inhibitor in mild steel under 1 M hydrochloric acid solution, East. Eur. J. Enterp. Technol. 2 (6 (110)) (2021) 6-20. [57] J.M. Bastidas, J.L. Polo, E. Cano, C.L. Torres, Tributylamine as corrosion inhibitor for mild steel in hydrochloric acid, J. Mater. Sci. 35 (11) (2000) 2637-2642. [58] M. Jokar, T.S. Farahani, B. Ramezanzadeh, Electrochemical and surface characterizations of morus alba pendula leaves extract (MAPLE) as a green corrosion inhibitor for steel in 1 M HCl, J. Taiwan Inst. Chem. Eng. 63 (2016) 436-452. [59] M. Rbaa, F. Benhiba, A.S. Abousalem, M. Galai, Z. Rouifi, H. Oudda, B. Lakhrissi, I. Warad, A. Zarrouk, Sample synthesis, characterization, experimental and theoretical study of the inhibitory power of new 8-hydroxyquinoline derivatives for mild steel in 1.0 M HCl, J. Mol. Struct. 1213 (2020) 128155. [60] E. Altunbaş Şahin, R. Solmaz, İ.H. Gecibesler, G.Kardaş, Adsorption ability, stability and corrosion inhibition mechanism of phoenix dactylifera extrat on mild steel, Mater. Res. Express 7 (1) (2020) 016585. [61] E.E. Oguzie, Y. Li, F.H. Wang, Corrosion inhibition and adsorption behavior of methionine on mild steel in sulfuric acid and synergistic effect of iodide ion, J. Colloid Interface Sci. 310 (1) (2007) 90-98. [62] J. Aslam, R. Aslam, I.H. Lone, N.R.E. Radwan, M. Mobin, A. Aslam, M. Parveen, A.A. Al-Freedi, A.A.Alzulaibani, Inhibitory effect of 2-Nitroacridone on corrosion of low carbon steel in 1 mol·L-1 HCl solution: An experimental and theoretical approach, J. Mater. Res. Technol. 9 (3) (2020) 4061-4075. |