[1] O. B, Bolaji, Ozone depletion and global warming: Case for the use of natural refrigerant - a review, Renew. Sustain. Energy Rev. 18 (2013) 49–54. [2] S.A. Montzka, M. McFarland, S.O. Andersen, B.R. Miller, D.W. Fahey, B.D. Hall, L. Hu, C. Siso, J.W. Elkins, Recent trends in global emissions of hydrochlorofluorocarbons and hydrofluorocarbons: Reflecting on the 2007 adjustments to the Montreal Protocol, J Phys Chem A 119 (19) (2015) 4439–4449. [3] J.V.H. D'Angelo, V. Aute, R.Radermacher, Performance evaluation of a vapor injection refrigeration system using mixture refrigerant R290/R600a, Int. J. Refrig. 65 (2016) 194–208. [4] L. Rocca and Panno, Experimental performance evaluation of a vapour compression refrigerating plant when replacing R22 with alternative refrigerants, Appl. Energy 88 (8) (2011) 2809–2815. [5] Jacobs and J. Roger, The precautionary principle as a provisional instrument in environmental policy: The Montreal Protocol case study, Environ. Sci. Policy 37 (2014) 161–171. [6] F. Polonara, L. Kuijpers, R.Peixoto, Potential impacts of the Montreal Protocol Kigali Amendment to the choice of refrigerant alternatives, Int. J. Heat Technol. 35 (Special Issue1) (2017) S1–S8. [7] Z. Yang, B. Feng, H.Y. Ma, L. Zhang, C.J. Duan, B. Liu, Y. Zhang, S.Y. Chen, Z.Y.Yang, Analysis of lower GWP and flammable alternative refrigerants, Int. J. Refrig. 126 (2021) 12–22. [8] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán, F. Molés, B.Peris, Drop-in energy performance evaluation of R1234yf and R1234ze(E) in a vapor compression system as R134a replacements, Appl. Therm. Eng. 71 (1) (2014) 259–265. [9] Z. Janković, J. Sieres Atienza, J.A.Martínez Suárez, Thermodynamic and heat transfer analyses for R1234yf and R1234ze(E) as drop-in replacements for R134a in a small power refrigerating system, Appl. Therm. Eng. 80 (2015) 42–54. [10] G.A. Longo, S. Mancin, G. Righetti, C.Zilio, Saturated vapour condensation of R134a inside a 4 mm ID horizontal smooth tube: Comparison with the low GWP substitutes R152a, R1234yf and R1234ze(E), Int. J. Heat Mass Transf. 133 (2019) 461–473. [11] Zhenxi, Ma, Experimental comparisons on a gas engine heat pump using R134a and low-GWP refrigerant R152a, Int. J. Refrig. 115 (2020) 73–82. [12] E. Huo, Y. Dai, P. Geng, M. Cao, Feasibility of using R1234ze and R152a mixture as alternative for R22, CIESC J. 66 (12) (2015) 4725–4729. (in Chinese) [13] Z.F. Meng, H. Zhang, J.Y. Qiu, M.J.Lei, Theoretical analysis of R1234ze(E), R152a, and R1234ze(E)/R152a mixtures as replacements of R134a in vapor compression system, Adv. Mech. Eng. 8 (11) (2016) 168781401667694. [14] A. Claudio, Faúndez, Thermodynamic consistency test for binary gas + water equilibrium data at low and high pressures, Chin. J. Chem. Eng. 21 (10) (2013) 1172–1181. [15] P, Susial, Measurement and modelization of VLE of binary mixtures of propyl acetate, butyl acetate or isobutyl acetate with methanol at pressure of 0.6 MPa, Chin. J. Chem. Eng. 24 (5) (2016) 630–637. [16] X. Chen and H. Li, Improved prediction of saturated and single-phase liquid densities of water through volume-translated SRK EOS, Fluid Phase Equilibria 528 (2021) 112852. [17] A. Saeed and S. Ghader, Calculation of density, vapor pressure and heat capacity near the critical point by incorporating cubic SRK EoS and crossover translation, Fluid Phase Equilibria 493 (2019) 10–25. [18] N.G. Tassin, V.A. Mascietti, M. Cismondi Phase behavior of multicomponent alkane mixtures and evaluation of predictive capacity for the PR and RKPR EoS’s, Fluid Phase Equilib. 480 (2019) 53–65. [19] J. I. W., Modeling VLE and GLE of systems involving polymers by using SRK equation of state, Chin. J. Chem. Eng. 15 (2) (2007) 221–227. [20] Xueqiang, Dong, Measurements of isothermal (vapour + liquid) equilibria data for{1, 1, 2, 2-Tetrafluoroethane (R134) + trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E))}at T = (258.150 to 288.150) K, J. Chem. Thermodyn. 60 (2013) 25–28. [21] Liangang, Kou, Experimental measurements and correlation of isothermal vapor-liquid equilibria for HFC-32 + HFO-1234ze (E) and HFC-134a + HFO-1234ze (E) binary systems, J. Chem. Thermodyn. 139 (2019) 105798. [22] S. Peng, S. Li, Z. Yang and Y. Duan, Vapor-liquid equilibrium measurements for the binary mixtures of pentafluoroethane (R125) with 2, 3, 3, 3-Tetrafluoroprop-1-ene (R1234yf) and 3, 3, 3-Trifluoropropene (R1243zf), Int. J. Refrig. 134 (2022) 115–125. [23] X. Meng, X. Hu, T. Yang and J. Wu, Vapor liquid equilibria for binary mixtures of difluoromethane (R32) + fluoroethane (R161) and fluoroethane (R161) + trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E)), J. Chem. Thermodyn. 118 (2018) 43–50. [24] X.Y. Yao, L. Ding, X.Q. Dong, Y.X. Zhao, X. Wang, J. Shen, M.Q.Gong, Experimental measurement of vapor-liquid equilibrium for 3, 3, 3-trifluoropropene(R1243zf) + 1, 1, 1, 2-tetrafluoroethane(R134a) at temperatures from 243.150 to 293.150 K, Int. J. Refrig. 120 (2020) 97–103. [25] Zhi, Yang, Phase equilibrium for the binary mixture of{1, 1-difluoroethane (R152a) + trans-1, 3, 3, 3-tetrafluoropropene (R1234ze (E))}at various temperatures from 258.150 to 288.150 K, Fluid Phase Equilibria 355 (2013) 99–103. [26] L.H. Feng, B. Li, Y.D. Dai, The calculation models of vapor-liquid equilibrium, enthalpy and entropy for R152a/R1234ze(E), J Iran Chem Soc 18 (8) (2021) 1905–1912. [27] E. W. Lemmon, M. L. Huber and M. O. Mclinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties–REFPROP. 9.0, NIST NSRDS (2010). [28] N.C. Zhang, B. Li, L.H. Feng, Y.D. Dai, Research on the thermophysical properties and cycle performances of R1234yf/R290 and R1234yf/R600a, Int J Thermophys 42 (8) (2021) 123. [29] D.Y. Peng, D.B.Robinson, A new two-constant equation of state, Ind. Eng. Chem. Fund. 15 (1) (1976) 59–64. [30] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197–1203. [31] D.S.H. Wong, S.I. Sandler, A theoretically correct mixing rule for cubic equations of state, Aiche J. 38 (5) (1992) 671–680. [32] M. J. Huron and J. Vidal, New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilibria 3 (4) (1979) 255–271. [33] H. Renon, J.M. Prausnitz, Local compositions in thermodynamic excess functions for liquid mixtures, Aiche J. 14 (1) (1968) 135–144. [34] Y. Liao, Y. Dai and C. Xu., Experimental investigation on vapor-liquid equilibrium for 1, 1-difluoroethane(R152a) +trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E)) binary systems, J. Chem. Thermodyn. 175 (2022) 106899. [35] G.M. Kontogeorgis, P.Coutsikos, Thirty years with EoS/GE models—what have we learned? Ind. Eng. Chem. Res. 51 (11) (2012) 4119–4142. |