[1] S.D. Eicher, J.L. Morrill, F. Blecha, Vitamin concentration and function of leukocytes from dairy calves supplemented with vitamin A, vitamin E, and beta-carotene in vitro, J. Dairy Sci. 77 (2) (1994) 560–565. [2] A.J. Sanyal, N. Chalasani, K.V. Kowdley, A. McCullough, A.M. Diehl, N.M. Bass, B.A. Neuschwander-Tetri, J.E. Lavine, J. Tonascia, A. Unalp, M. Van Natta, J. Clark, E.M. Brunt, D.E. Kleiner, J.H. Hoofnagle, P.R. Robuck, N.A.S.H. Crn, Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis, N. Engl. J. Med. 362 (18) (2010) 1675–1685. [3] S.N. Meydani, M.P. Barklund, S. Liu, M. Meydani, R.A. Miller, J.G. Cannon, F.D. Morrow, R. Rocklin, J.B. Blumberg, Vitamin E supplementation enhances cell-mediated immunity in healthy elderly subjects, Am. J. Clin. Nutr. 52 (3) (1990) 557–563. [4] M.G. Marko, T. Ahmed, S.C. Bunnell, D. Wu, H. Chung, B.T. Huber, S.N. Meydani, Age-associated decline in effective immune synapse formation of CD4(+) T cells is reversed by vitamin E supplementation, J. Immunol. 178 (3) (2007) 1443–1449. [5] D. Wu, S.N. Meydani, Age-associated changes in immune function: impact of vitamin E intervention and the underlying mechanisms, Endocr. Metab. Immune Disord. Drug Targets 14 (4) (2014) 283–289. [6] F. Galli, A. Azzi, M. Birringer, J.M. Cook-Mills, M. Eggersdorfer, J. Frank, G. Cruciani, S. Lorkowski, N.K. Özer, Vitamin E: emerging aspects and new directions, Free Radic. Biol. Med. 102 (2017) 16–36. [7] A. Baj, J. Cedrowski, E. Olchowik-Grabarek, A. Ratkiewicz, S. Witkowski, Synthesis, DFT calculations, and in vitro antioxidant study on novel carba-analogs of vitamin E, Antioxidants (Basel) 8 (12) (2019) 589. [8] P. Karrer, O. Isler, Dl-tocopherols and process for the manufacture of same, U.S. Pat., US23184638A (1938). [9] O. Isler, P. Schudel, H. Mayer, J. Würsch, R.Rüegg, Chemistry of vitamin E. Vitamins & Hormones. Amsterdam: Elsevier, 1962: 389–405. [10] P. Torres, D. Reyes-Duarte, N. López-Cortés, M. Ferrer, A. Ballesteros, F.J.Plou, Acetylation of vitamin E by Candida antarctica lipase B immobilized on different carriers, Process. Biochem. 43 (2) (2008) 145–153. [11] Z.Q. Zou, L.M. Dai, D.H. Liu, W.Du, Research progress in enzymatic synthesis of vitamin E ester derivatives, Catalysts 11 (6) (2021) 739. [12] A. Roberto, Chica, Semi-rational approaches to engineering enzyme activity: combining the benefits of directed evolution and rational design, Curr. Opin. Biotechnol. 16 (4) (2005) 378–384. [13] F.I. Khan, D. Lan, R. Durrani, W. Huan, Z. Zhao, Y. Wang, The lid domain in lipases: structural and functional determinant of enzymatic properties, Front. Bioeng. Biotechnol. 5 (2017) 16. [14] P. Domínguez de María, J.M. Sánchez-Montero, J.V. Sinisterra, A.R. Alcántara, Understanding Candida rugosa lipases: an overview, Biotechnol. Adv. 24 (2) (2006) 180–196. [15] A. Louwrier, G.J. Drtina, A.M. Klibanov, On the issue of interfacial activation of lipase in nonaqueous media, Biotechnol. Bioeng. 50 (1) (1996) 1–5. [16] R.R. Sousa, A.S. Silva, R. Fernandez-Lafuente, V.S. Ferreira-Leitão, Solvent-free esterifications mediated by immobilized lipases: a review from thermodynamic and kinetic perspectives, Catal. Sci. Technol. 11 (17) (2021) 5696–5711. [17] P.A. Mendoza-Ortiz, R.S. Gama, O.C. Gómez, J.H.H. Luiz, R. Fernandez-Lafuente, E.C. Cren, A.A.Mendes, Sustainable enzymatic synthesis of a solketal ester—process optimization and evaluation of its antimicrobial activity, Catalysts 10 (2) (2020) 218. [18] W.C.A. Carvalho, J.H.H. Luiz, R. Fernandez-Lafuente, D.B. Hirata, A.A.Mendes, Eco-friendly production of trimethylolpropane triesters from refined and used soybean cooking oils using an immobilized low-cost lipase (Eversa>® Transform 2.0) as heterogeneous catalyst, Biomass Bioenergy 155 (2021) 106302. [19] J.S. Dordick, Designing enzymes for use in organic solvents, Biotechnol. Prog. 8 (4) (1992) 259–267. [20] X.J. Jiang, Y. Hu, L. Jiang, J.H. Gong, H. Huang, Synthesis of vitamin E succinate from Candida rugosa lipase in organic medium, Chem. Res. Chin. Univ. 29 (2) (2013) 223–226. [21] C. Yin, J. Liu, M. Gao, Enzyme-catalyzed synthesis of vitamin E succinate using a chemically modified novozym-435, Chin. J. Chem. Eng. 19 (1) (2011) 135–139. [22] W.K. Yang, L.J. Zhu, Y.C. Cui, H.W. Wang, Y.W. Wang, L. Yuan, H. Chen, Improvement of site-directed protein-polymer conjugates: high bioactivity and stability using a soft chain-transfer agent, ACS Appl. Mater. Interfaces 8 (25) (2016) 15967–15974. [23] R. Abdallah, Ismail, Lipase immobilization with support materials, preparation techniques, and applications: present and future aspects, Int. J. Biol. Macromol. 163 (2020) 1624–1639. [24] S. Hari Krishna, N.G. Karanth, Lipases and lipase-catalyzed esterification reactions in nonaqueous media, Catal. Rev. 44 (4) (2002) 499–591. [25] Pierre, Villeneuve, Customizing lipases for biocatalysis: a survey of chemical, physical and molecular biological approaches, J. Mol. Catal. B Enzym. 9 (4–6) (2000) 113–148. [26] R.C. Rodrigues, J.J. Virgen-Ortíz, J.C.S. dos Santos, Á. Berenguer-Murcia, A.R. Alcantara, O. Barbosa, C. Ortiz, R.Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnol. Adv. 37 (5) (2019) 746–770. [27] M. Petkar, A. Lali, P. Caimi, M.Daminati, Immobilization of lipases for non-aqueous synthesis, J. Mol. Catal. B Enzym. 39 (1–4) (2006) 83–90. [28] Ivan, Kurtovic, Immobilisation of Candida rugosa lipase on a highly hydrophobic support: a stable immobilised lipase suitable for non-aqueous synthesis, Biotechnol. Rep. 28 (2020) e00535. [29] A, Mustranta, Applications of immobilized lipases to transesterification and esterification reactions in nonaqueous systems, Enzyme Microb. Technol. 15 (2) (1993) 133–139. [30] J. Ge, M. Yan, D. Lu, M. Zhang, Z. Liu, Hyperbranched polymer conjugated lipase with enhanced activity and stability, Biochem. Eng. J. 36 (2) (2007) 93–99. [31] Yanjing, Wang, Site-specific conjugation of polymers to proteins, Biomacromolecules 19 (6) (2018) 1804–1825. [32] G. Ferrand-Drake Del Castillo, M. Koenig, M. Müller, K.J. Eichhorn, M. Stamm, P. Uhlmann, A. Dahlin, Enzyme immobilization in polyelectrolyte brushes: high loading and enhanced activity compared to monolayers, Langmuir 35 (9) (2019) 3479–3489. [33] X. Wang, N.S. Yadavalli, A.M. Laradji, S.Minko, Grafting through method for implanting of lysozyme enzyme in molecular brush for improved biocatalytic activity and thermal stability, Macromolecules 51 (14) (2018) 5039–5047. [34] B.S. Lele, H. Murata, K. Matyjaszewski, A.J. Russell, Synthesis of uniform protein-polymer conjugates, Biomacromolecules 6 (6) (2005) 3380–3387. [35] M. Kovaliov, M.L. Allegrezza, B. Richter, D. Konkolewicz, S.Averick, Synthesis of lipase polymer hybrids with retained or enhanced activity using the grafting-from strategy, Polymer 137 (2018) 338–345. [36] Ning, Chen, Activation and stabilization of lipase by grafting copolymer of hydrophobic and zwitterionic monomers onto the enzyme, Biochem. Eng. J. 158 (2020) 107557. [37] Z. Jiang, Z. Liu, S. Bai, Q. Shi, Synthesis of polymer grafted lipase and its effect on enzyme activity, CIESC J. 70 (2019) 3473–3482. (in Chinese) [38] P. Böhlen, S. Stein, W. Dairman, S. Udenfriend, Fluorometric assay of proteins in the nanogram range, Arch. Biochem. Biophys. 155 (1) (1973) 213–220. [39] S. Jill, Stocks, A fluorometric assay of the degree of modification of protein primary amines with polyethylene glycol, Anal. Biochem. 154 (1) (1986) 232–234. [40] J.E. Noble, A.E. Knight, A.J. Reason, A. Di Matola, M.A. Bailey, A comparison of protein quantitation assays for biopharmaceutical applications, Mol Biotechnol 37 (2) (2007) 99–111. [41] J. Ge, D.N. Lu, J. Wang, Z. Liu, Lipase nanogel catalyzed transesterification in anhydrous dimethyl sulfoxide, Biomacromolecules 10 (6) (2009) 1612–1618. [42] K.-J. Liu, Y.-R. Huang, Lipase-catalyzed production of a bioactive terpene ester in supercritical carbon dioxide, J. Biotechnol. 146 (4) (2010) 215–220. [43] N.N. Ulusu, Evolution of enzyme kinetic mechanisms, J Mol Evol 80 (5) (2015) 251–257. [44] L. Zhang, Y. Sun, Poly(carboxybetaine methacrylate)-grafted silica nanoparticle: a novel carrier for enzyme immobilization, Biochem. Eng. J. 132 (2018) 122–129. [45] K. Ohno, T. Morinaga, K. Koh, Y. Tsujii, T.Fukuda, Synthesis of monodisperse silica particles coated with well-defined, high-density polymer brushes by surface-initiated atom transfer radical polymerization, Macromolecules 38 (6) (2005) 2137–2142. [46] D. Bontempo, H.D. Maynard, Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation, J. Am. Chem. Soc. 127 (18) (2005) 6508–6509. [47] J. Boudrant, J.M. Woodley, R.Fernandez-Lafuente, Parameters necessary to define an immobilized enzyme preparation, Process. Biochem. 90 (2020) 66–80. [48] Yi, Hu, Synthesis of vitamin E succinate by interfacial activated Candida rugosa lipase encapsulated in Sol-gel materials, Chin. J. Catal. 34 (8) (2013) 1608–1616. [49] Q.Y. Zeng, G.F. Lv, G.D. Huang, J.P. Zhang, L.M. Tan, Y. Chen, X.H. Liu, The Method of the synthesis of tocopherol succinate, CN Pat., CN201410826063.2 (2014). [50] Y.P. Jian, Y.L. Han, Z.W. Fu, M. Xia, G.Q. Jiang, D.N. Lu, J.Z. Wu, Z. Liu, The role of conformational dynamics in the activity of polymer-conjugated CalB in organic solvents, Phys. Chem. Chem. Phys. 24 (36) (2022) 22028–22037. [51] S. Arana-Peña, N.S. Rios, D. Carballares, L.R.B. Gonçalves, R.Fernandez-Lafuente, Immobilization of lipases via interfacial activation on hydrophobic supports: production of biocatalysts libraries by altering the immobilization conditions, Catal. Today 362 (2021) 130–140. [52] M. Kovaliov, C. Cheng, B. Cheng, S. Averick, Grafting-from lipase: utilization of a common amino acid residue as a new grafting site, Polym. Chem. 9 (37) (2018) 4651–4659. [53] P, Pires-Cabral, Esterification activity and operational stability of Candida rugosa lipase immobilized in polyurethane foams in the production of ethyl butyrate, Biochem. Eng. J. 48 (2) (2010) 246–252. [54] J.J. Xia, B. Zou, R.Y. Zhou, A.I.Onyinye, Lipase nanogel catalyzed synthesis of vitamin E succinate in non-aqueous phase, J. Sci. Food Agric. 101 (8) (2021) 3186–3192. [55] X. Cao, Y. Ni, A.L. Zhang, S. Xu, K.Q. Chen, P.K. Ouyang, Encapsulation of enzymes in metal ion-surfactant nanocomposites for catalysis in highly polar solvents, Chem. Commun. 53 (21) (2017) 3134–3137. [56] Y. Cao, Z.F. Wu, T. Wang, Y. Xiao, Q.S. Huo, Y.L. Liu, Immobilization of Bacillus subtilis lipase on a Cu-BTC based hierarchically porous metal-organic framework material: a biocatalyst for esterification, Dalton Trans. 45 (16) (2016) 6998–7003. |